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a b s t r a c t

The elastic deformation of a single-layer nanostructured graphene sheet is investigated using an
atomistic-based continuum approach. This is achieved by equating the stored energy in a representative
unit cell for a graphene sheet at atomistic scale to the strain energy of an equivalent continuum medium
under prescribed boundary conditions. Proper displacement-controlled (essential) boundary conditions
which generate a uniform strain field in the unit cell model are applied to calculate directly one elastic
modulus at a time. Three atomistic finite element models are adopted with an assumption that the force
interaction among carbon atoms can be modeled by either spring-like or beam elements. Thus, elastic
moduli for graphene structure are determined based on the proposed modeling approach. Then, effective
Young's modulus and Poisson's ratio are extracted from the set of calculated elastic moduli.

Results of Young's modulus obtained by employing the different atomistic models show a good
agreement with the published theoretical and numerical predictions. However, Poisson's ratio exhibits
sensitivity to the considered atomistic model. This observation is supported by a significant variation in
estimates as can be found in the literature. Furthermore, isotropic behavior of in-plane graphene sheets
was validated based on current modeling.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, nanostructured graphene sheets have captured the
attention of many researchers. This can be attributed to their
remarkable mechanical properties and cheap method of produc-
tion as presented by Stankovich et al. [1]. In addition, character-
ization of behavior of graphene facilities better understanding of
other fundamental nano-materials like Carbon nanotubes (CNTs)
which are viewed as a deformed graphite sheets.

The complexity and high expense of investigating the mechanical
behavior of graphene sheets via experiments stimulated the use of
numerical simulation as proven tool capable of modeling nanostruc-
tures with different dimensions. In this context, equivalent
continuum-structural mechanics has been widely used to character-
ize the mechanical behavior of nanostructured materials. In this
approach, typical elements of structural mechanics such as rods,
beams and shells are used to simulate the static and dynamic
behavior of monolayer graphene. The mechanical properties of such
structural elements are derived from the equivalence between steric
potential of the carbon–carbon (C–C) bonds and mechanical strain
energies associated with tension, torsion and bending related to the
mechanical elements simulating the bonds themselves. A truss

model was proposed by Odegard et al. [2], wherein rods of different
degrees of stiffness represent the stretching and in-plane bending
capabilities of the C–C bonds. Li and Chou [3] proposed an equivalent
structural beam capable of modeling interatomic forces of the carbon
covalent bonds. They adopted a molecular structural mechanics
approach to compute effective elastic constants of carbon nanotubes.
Meo and Rossi [4] developed a finite element model based on the use
of nonlinear central spring and linear torsional spring elements to
represent the modified Morse potential when simulating graphene.
Cho et al. [5] carried out a molecular structural analysis to predict the
elastic constants of graphite. The in-plane properties of graphite were
derived by considering a single-layer graphene sheet subjected to an
in-plane loading. Based on atomistic finite element approach,
Shakhaee-Pour [6] investigated the elastic behavior of single-layer
graphene sheets. By employing an equivalent structural beam, the
elastic constants of graphene were calculated. Scrape et al. [7]
proposed a truss-type model in conjunction with cellular material
mechanics theory to describe the in-plane elastic properties of
single-layer graphene sheets.

Analytically, some researchers [8] investigated Young's modulus
of graphene and CNTs based on nanoscale continuum modeling.
They employed frame elements to simulate C–C bonds for which
they obtained a closed form solution. Several others utilized
atomistic finite elements to simulate graphene sheet using linear
interatomic potential functions for bonds. Atomistic-based finite
element models have been used to analyze graphene sheets in many
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recent studies in literature due to its simplicity, computational cost
effectiveness and low CPU time. In contrast, atomistic models require
a significant computational effort. Taking into account the advantages
of the atomistic models, FE incorporates actual atomistic character-
istics and interatomic forces among carbon atoms while other
continuum models fails to do so. Georgantzinos et al. [9] developed
a formulation on the basis of spring element using linear interatomic
potentials to compute mechanical properties. Some other researchers
incorporated non-linear springs for simulating both bond stretch and
bond angle variation [10,11]. Based on an equivalent continuum
approach, Alzebdeh [12] used atomistic finite element simulation in
conjunction with a beam model to evaluate elastic moduli and
constants for single-layered graphene sheets with different sizes.

In this paper, a continuum approach based on an atomistic
modeling is proposed to simulate mechanical behavior of gra-
phene, in order to predict its mechanical properties. At nanoscale,
we consider a unit cell representing a finite-size graphene sheet
equivalent to a homogenized medium in a continuum sense. Three
atomistic finite element-based models for bond stretch and bond
angle variation are adopted: (i) linear spring, (ii) nonlinear spring,
and (iii) structural beam to model interatomic interactions
between carbon atoms, described by modified Morse potential
function.

2. Molecular interactions

From the viewpoint of molecular mechanics, the nanostructure
of a graphene sheet is constituted by a monolayer of carbon atoms
arranged periodically and uniformly in a hexagonal “honeycomb”
fashion (as shown in Fig. 1).

Their motion is governed by the molecular force field, which is
generated from electron–nucleus and nucleus–nucleus interac-
tions. The total interatomic potential energy of a molecular system
is expressed as a sum of several energy terms after neglecting the
non-bonded interactions:

U ¼∑Urþ∑Uθþ∑Uφþ∑Uω ð1Þ

where Ur stands for a bond stretch, Uθ is for a bond angle bending,
∑Uφ is for dihedral angle torsion, and Uω is for an improper (out-
of-plane) torsion. Several different potential functions for describ-
ing the carbon–carbon bond other than simple harmonic functions
are available [13,14]. The Tersoff–Brenner potential function is
generally more accurate compared to other potential functions but
it is complicated as presented by Jiang et al. [15]. Considering a
single-layered sheet, generally, the dominant parts of interatomic
potential are bond stretching and bond angle variations due to
their significant contribution comparing to other interactions. The
modified Mores potential function in Belytschko et al. [16] is
simple and therefore, will be adopted in the present study as
given below:

U ¼UstrechþUangle ð2Þ

U ¼Def½1�e�βðΔrÞ��2�1g ð3Þ

U ¼ 1
2
kθðΔθÞ2½1þksexticðΔθÞ4� ð4Þ

where Ustrech is the bond energy due to bond stretch, and Uangle is
the bond energy due bond angle variation. The above parameters
(constants) are calibrated by Belytsckho [16] with Brenner poten-
tial as follows:

De ¼ 0:6031 nN nm; β¼ 26:25 nm�1

kθ ¼ 8:7e�10 nNU
nm

rad2; ksextic ¼ 0:755 rad�4

This set of parameters corresponds with the Brenner potential
for strain below 10% and separation (dissociation) energy of
124 kcal mol [17]. The modified Morse interatomic potential ener-
gies and force fields will serve as a basis for the current atomistic
modeling and subsequent calculations.

3. Modeling technique

The proposed atomistic-based continuum approach for model-
ing of graphene sheets is presented. The basic idea is to use a
representative unit cell at atomistic scale for repeating honeycomb
geometry of graphene sheet with finite dimensions (Fig. 2). To
calculate effective elastic moduli, an equivalent homogenized
medium of a triangular shape with equal mechanical properties
is assumed. This equivalence is established by equating energies of
both models under controlled boundary conditions which gener-
ates a uniform (constant) strain field over the domain of unit cell.
Potential energy stored in the atomistic model is determined via
atomistic finite element simulations as will be outlined later.

3.1. Equivalent continuum model

For a homogeneous continuum medium, the constitutive rela-
tionship under a plane stress assumption is expressed in terms of
the stiffness matrix Cij by:
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Each entry (C11, C22, C12) of the stiffness matrix is calculated by
conducting a simulation run under prescribed loading conditions
on boundaries. C66 is not an independent modulus; therefore its
calculation will not be considered. Equivalently, the simulation
models are run by applying a uniform strain (εoij) to the continuum
model generating prescribed displacements on the boundaries
given by:

ui ¼ εoijxj i; j¼ 1;2 ð6Þ

where ui is the prescribed displacement, and xj is the coordinate of
boundaries. The corresponding continuum stored strain energy
density is given by

U ¼ V
2
sijεij ¼

V
2
½C11ðε11Þ2þC22ðε22Þ2þC66ðε12Þ2þC12ðε11Þðε22Þ� ð7Þ

Fig. 1. Geometry of a graphene sheet. Fig. 2. Representative unit cell concept.
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