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a b s t r a c t

We investigate the effect of electron–A1g phonon coupling on the gapless electronic band dispersion of
the pristine graphene. The electron–phonon interaction is introduced through a Kekulé-type distortion
giving rise to inter-valley scattering between K and K′ points in graphene. We develop a Fröhlich type
Hamiltonian within the continuum model in the long-wave length limit. By presenting a fully theoretical
analysis, we show that the interaction of charge carriers with the highest frequency zone-boundary
phonon mode of A1g�symmetry induces a mini band gap at the corners of the two-dimensional Brillouin
zone of the graphene in the THz region. Since electron–electron interactions favor this type of lattice
distortion, it is expected to be enhanced, and thus its quantitative implications might be measurable in
graphene.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery of graphene [1,2] and its unconventional
physical properties, the investigation of electronic properties of
both graphene and graphene-based nanostructures have become
one of the active areas in condensed matter physics experimen-
tally as well as theoretically,in past few years. Theoretically, in the
low-energy limit charge carries of graphene have linear dispersion
relation around the so-called Dirac points [3] having Fermi velocity
[4] vFC106 m=s, and the Dirac–Weyl equation can be safely used
within the framework of continuum description of the electronic
band structure of the graphene [5].

It is also well-known that both in-plane and out-of-plane
phonon modes play an important role in charge carriers dynamics
of the graphene [6–31]. On the one hand the Fermi velocity is
reduced by interaction of charge carriers with doubly degenerate
in-plane E2g phonon [27,28]. On the other hand, though the
electron-highest frequency zone-boundary phonon interaction,
i.e., Kekulé-type distortion of the graphene lattice is one of the
possible mechanisms among the gap generations, except that the
work of Samsonidze et al. [16], there are no theoretical works on
its influence on the graphene band dispersion. This first theoretical
prediction of dynamical mini band gap formation in graphene due
to the highest frequency phonon mode with A1g�symmetry is
reported by Samsonidze et al. [16]. They showed that, based on a
simple tight-binding model at room temperature, such as an
electron–phonon coupling mechanism induces a mini gap at
around 10 meV, and it is also responsible for the Kohn anomalies
[32] in graphene. The Kekulé structure consists of a network of

hexagons with the alternating short and long bonds like in the
classical benzene molecule. This pattern was studied for the 1D
simple model, finite size carbon nanotubes [33,34]. Investigation
of the gap formation, in particular, its control, in both graphene
and graphene-based nanostructures is itself one of the hot topics
of the current research in graphene, and such a gap generation
can be created by strain [35–37] or by substrate induced effects
[10,38,39].

In this paper, to investigate the effect of interaction of graphene
charge carriers with the highest frequency optical phonon mode of
A1g symmetry near the zone boundary K ðK′Þ, we performed an
analytical study based on Lee–Low and Pines (LLP) theory [40]. The
carrier–phonon interaction is described through a Kekulé-type
distortion giving rise to inter-valley scattering between K and K′
points in graphene [41–45]. Based on this interaction, we first
construct a Fröhlich type Dirac–Weyl Hamiltonian which is non-
diagonal in phonon creation and annihilation operators. Secondly,
we present a simple analytical model to diagonalize it by just
introducing two successive unitary transformations. Finally, we
show that the interaction of charge carriers with highest zone
boundary phonon mode opens a mini band gap at the corners of
the Brillouin zone.

2. Theory

In the long-wave length regime, the Hamiltonian of the gra-
phene electron (hole) interacting with A1g�phonon mode can be
written as

H¼H0þ∑
q;μ

ℏωμðqÞb†μ;qbμ;qþHe�p ð1Þ
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where H0 ¼ vFα � p is the unperturbed part, whose spectrum
describes cone like behavior around the Dirac points with eigenva-
lues εkλ ¼ λvFk. λ is the band index, and takes �1ðþ1Þ values
corresponding to valence (conduction) bands in pristine graphene.
These two bands touch each other at the corners of the Brillouin
zone, i.e., at the well-known K and K′ points whose coordinates are
given by K¼ ð2π=aÞð1=3;1=

ffiffiffi
3

p
Þ and, K′¼ ð2π=aÞð2=3;0Þ, respec-

tively. We have labeled these points in Eq. (1) by the valley index
μ. Here, α is the four component Dirac matrices, and a is the
carbon-carbon interdistance bond length, i.e., 1.42 Å. Thus, the
corresponding eigenfunctions of the unperturbed part H0 can easily
be constructed in terms of four component pseudospinors

〈rjKλk〉¼ expðik � rÞffiffiffi
2

p
L

λ
eiθðkÞ

0
0

0
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1
CCCA

〈rjK′λk〉¼ expðik � rÞffiffiffi
2

p
L

0
0

eiθðkÞ

λ

0
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CCCA; ð2Þ

where L2 is the total area of the system. In Eq. (1), the last term
represents the electron–phonon couplings [44], and is given by

He�p ¼ 2
βKγ
a2

0 ω�1ΔK′ðrÞry
ωΔKðrÞry 0

 !
ð3Þ

where βK ¼ �d ln J0=d ln a, γ ¼ ð3a=2ÞJ0, ω¼ expð2πi=3Þ, J0 is the
resonance integral between nearest neighbor carbon atoms which
is of order 2.77 eV, ry is the 2�2 Pauli matrix. In Eq. (3), the
amplitude of distortions at K and K′ points is defined by

ΔKðrÞ ¼∑
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2NMCωKðqÞ

s
bK;qþb†K′;�q

� �
eiq�r

ΔK′ðrÞ ¼∑
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2NMCωKðqÞ

s
ðbK′;qþb†K;�qÞeiq�r ; ð4Þ

respectively. N is the number of unit cells,MC is the mass of a carbon
atom. In Eq. (4), bK;q (bK′;q) and b†K;q (b†K′;q) are the phonon creation
and annihilation operators at points K ðK′Þ with phonon wave vector
q and frequency ωKðqÞ. The corresponding highest zone-boundary
phonon energy is ℏωKð0Þ ¼ 161:2 meV [44]. Therefore, the electron–
phonon interaction Hamiltonian given by Eq. (3) can be conveniently
rewritten in the following form:

He�p ¼ � ∑
μaν

∑
q
½ ~Mμνbμ;qeiq U rþh:c:�: ð5Þ

We have defined ~Mμν as M0Mμν such that

MKK′ ¼
ωffiffiffiffi
N

p
0 0
ry 0

 !
;

MK′K ¼ ω�1ffiffiffiffi
N

p 0 ry

0 0

� �
;

together with M0 ¼ 3a0q0J0. Here, a0 ¼ ðℏ=2MCωKð0ÞÞ1=2, and q0 ¼
ð∂J0= ∂aÞ=J0 is predicted [47,46] at around 2:0 Å

�1
and 2:5 Å

�1
.

To diagonalize the phonon subsystem of Eqs. (1)– (5) we
employ a unitary transformation scheme within the LLP theory.
This includes two successive transformations each of which
eliminates the electron coordinates from Eq. (1), and shifts phonon
coordinates by an amount of the interaction strength, respectively.
To do this we follow the method developed for the investigation of
the interaction of electron (hole) with doubly degenerate optical
phonon modes of E2g symmetry near the zone center [27],
wherein an ansatz was made so as to take into account the chiral
nature of the pristine graphene due to its gapless electronic band

structure. However, besides the chiral nature of the problem, it
should be considered that the zone boundary phonon gives rise to
inter-valley scattering between K and K′. Therefore, to be compa-
tible with these properties of the problem, we make an ansatz for
the ground-state of the whole system.

jΦ〉¼ ∑
μ′aν′

∑
λ′
αμ′λ′7 jμ′λ′k〉 � U1U2j0〉ph ð6Þ

such that HjΦ〉¼ E7 jΦ〉. Here, j0〉ph stands for the phonon
vacuum, and αμ′λ′7 jμ′λ′k〉 corresponds to electronic state vector
defined through the appropriate fractional amplitudes, αμ′λ′7 , due
to the fact that total wave function of the system must be the
linear combination of jμ′þk〉 and jμ′�k〉, respectively.

On the one hand, the first unitary transformation

U1 ¼ exp � irU∑
q
qb†μ;qbμ;q

" #
ð7Þ

eliminates electron coordinates from Eq. (1), since the transformed

operators are given by the relations, ~bμ;q ¼ bμ;q exp½� iqUr� and

~p ¼ p�∑q;μℏqb
†
μ;qbμ;q. Therefore, the transformed Hamiltonian

takes the form,

~H ¼ vFαU p�ℏ∑
q;μ

qb†μ;qbμ;q

 !

þ∑
q;μ

ℏωKb
†
μ;qbμ;q�∑

q;μ
ð ~Mμνbμ;qþh:c:Þ: ð8Þ

On the other hand, the second unitary transformation

U2 ¼ exp ∑
q

~M0〈μ′λ′kjM†
μνjν′λk〉b†μ;q�h:c:

" #
ð9Þ

is the well-known displaced oscillator transformation which shifts
phonon coordinates by an amount of the interaction amplitude,
~M0 ¼M0=ℏωKð0Þ. It just shifts the phonon coordinates, since it
generates the coherent states for the phonon subsystem such that

optical phonon operators transform according to the rule ~bμ;q ¼
bμ;qþ ~M0〈μ′λ′kjM†

μνjν′λk〉. As a result, under the transformation U2,

Eq. (8) can then be written as ~H ¼H0þH1, where H0 and H1 are
given by

H0 ¼ ℏvFαU ~pþ∑
q;μ

j ~M0j2ℏωKj〈δλ′kjM†
μνjζλk〉j2

�∑
q;μ

½j ~M0j2ℏωKMμνj〈δλ′kjM†
μνjζλk〉j2þh:c:� ð10Þ

and

H1 ¼ ∑
q;μ

ðMμνbμ;qþh:c:Þþ∑
q;μ

ℏ ~ωμðqÞb†μ;qbμ;q; ð11Þ

respectively. Here, we have defined

~p ¼ p�ℏ∑
q;μ

qj ~M0j2j〈δλ′kjM†
μνjζλk〉j2;

Mμν ¼Mμνþℏ ~ωμðqÞ ~M0〈μ′λ′kjMμνjν′λk〉;

and ~ωμðqÞ ¼ωμðqÞ�vFαUq. Therefore, one applies the phonon
vacuum to the sum of Eqs. (10) and (11), only the contribution
comes from the diagonalized part, i.e. from H0. By using the ansatz

given by Eq. (6), one first applies Eq. (10) to the term αμ′λ′7 jμ′λ′k〉,
and then sums over λ′ to construct the eigenvalue equation
HjΦ〉μνλ ¼ E7 jΦ〉μνλ. Finally, by taking inner products to compare
the related coefficients of the states jμ′λ′k〉 we arrive at four
simultaneous equations for αKþ

7 , αK�
7 , αK′þ

7 and αK′�
7 which can be
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