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a b s t r a c t

The appearance of a pseudo-gap and the build up of states around the Dirac point for doped graphene
can be elucidated by an analysis of the density of states spectral moments. Such moments are calculated
by using the Cyrot-Lackmann theorem, which highlights the importance of the network local topology.
Using this approach, we sum over all disorder realizations up to a certain radius to show how the spectral
moments change. As a result, the spectrum becomes unimodal, however, strictly localized states appears
at the Dirac point. Such states are important for the magnetic properties of graphene, and are calculated
as a function of the doping concentration. By removing these states in the count of the spectral moments,
it is finally seen that the density of states increases its bimodal character and the tendency for a pseudo-
gap opening. This result is important to understand the trends in the magnetic and electronic properties
of doped graphene. In graphene with vacancies, the same ideas can also be useful to isolate in a rough
way which effects are due solely to topology.

& 2013 Elsevier Ltd. All rights reserved.

Graphene is currently a ‘rising star’ in condensed-matter
physics [1]. Mainly, because it is the first truly two-dimensional
crystal [2], and has a high electrical [3] and thermal conductivity
[4]. These properties place graphene as an ideal candidate for a
new electronic, based in carbon, to replace silicon. The problem is
that graphene is not a semiconductor. However, it has been shown
that graphene can present a change from metal to insulator when
it is doped by adsorbed H [5], as was also predicted by using
arguments on frustration due to the graphene's underlying trian-
gular symmetry [6,7]. It is important to remark that such theore-
tical results, were performed under the supposition that hydrogen
is bonded to graphene covalently with the 2pz orbital, and very
roughly, it confines the wave function spatially like a vacancy [8,9].
Although this approach may seems too simplistic, it has been
useful to predict localization tendencies and the size of a pseudo-
gap [6], in good agreement with experimental data [5]. More
recent detailed calculations show that in fact, vacancies and
impurities are different, both requiring a fine tuning of the tight-
binding Hamiltonian [10,11], instead of using an infinite self-
energy at impurity sites. For example, nitrogen and boron have a
scattering potential with a extension larger than 10 shells of
neighbors [10]. However, the exercise of considering impurity
sites with infinite self-energy is interesting because it allows to
understand which effects are due solely to the honeycomb lattice
topology. For low concentration of impurities, this procedure leads
to resonant states near the Dirac energy [12], ED, which coincides

with the Fermi energy for a zero bias potential. For higher
concentrations, a region of localized and critical states appears
[6,13]. Such critical states are believed to be multifractal [13].
Numerical simulations suggest that a pseudo-gap is open at the
Dirac point [6]. On the other hand, in the middle of the pseudo-
gap, states appears as the impurity concentration raises. Such
states are important to understand the diamagnetic properties of
graphene [14]. Some of these features are robust against the
specific parameters of disorder since they only depend on general
symmetry arguments [15]. So for example, more detailed calcula-
tions will shift the pseudo-gap or its size, but the basic mechanism
is provided by topology [6,7]. More refined results can be obtained
by performing a systematic series expansion for finite impurity
self-energy. Here we present only the first and dominant term of
such serie, others are corrections to it. Also, renormalization
techniques can be used to treat local disorder in non-diagonal
elements [6,13].

In the same spirit, here we show that the appearance of the
pseudo-gap and the build up of states around ED can be elucidated
by an analysis of the spectral moments [16] which highlights the
importance of the network local topology. Furthermore, this
method allows to count the number of states at ED as a function
of the concentration, and explain them, above the percolation
threshold, as strictly confined states in local clusters.

As a model, consider the graphene's honeycomb lattice with
substitutional impurities placed at random with a uniform dis-
tribution. The corresponding tight-binding Hamiltonian for the
electron in the π orbital is given by [17],

H¼ −t∑
〈i,j〉

ji〉〈jjþε∑
l

jl〉〈lj, ð1Þ
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where the first sum is over nearest neighbors, t¼2.79 eV is the
hopping energy [18], and the second is over every impurity sites
with self-energy ε. The number of impurities sites, Nimp, is
determined by the concentration C ¼Nimp=N, where N is the total
sites on the honeycomb lattice. It is well known that for pure
graphene (ε¼ 0), the density of states (DOS) is bimodal, i.e., the
two Van Hove singularities dominate in the DOS. We will show
that the bimodal behavior tends to increase when the concentra-
tion is increased, although one must be careful since states at the
middle of the spectrum (at ED) have a weight that needs to be
removed first.

To prove this, we will consider here the moments of the DOS
function ρðEÞ. The spectral moments are defined as

μðnÞi ¼
Z ∞

−∞
ðE−HiiÞnρiðEÞ dE: ð2Þ

These moments can be calculated by counting closed paths that
start and return at the same lattice site i, as was shown by Cyrot-
Lackman [19],

μðnÞi ¼ 〈ijðH−HiiÞnji〉, ð3Þ

since the right hand term of the equation corresponds to the
number of paths with n steps that return to the original site i.

There is a dimensionless parameter to measure the tendency of
the local DOS (LDOS) to open a pseudo-gap at its center [19],

si ¼
μð4Þi μð2Þi −ðμð2Þi Þ3−ðμð3Þi Þ2

ðμð2Þi Þ3
ð4Þ

If si≥1 the LDOS is unimodal; meanwhile, if sio1 the LDOS is
bimodal, and has a tendency for a pseudo-gap opening at the
center [19].

Also, it is important to remark that here, no self-energy Hii was
considered for carbon atoms in the unperturbed Hamiltonian.
Thus, the zero energy has been chosen to coincide with the
vertices of the Dirac cone at ED. As a result, the spectrum is
symmetric around E¼0. The real spectrum can be readily obtained
by an energy shifting, as usually done in all works concerning
graphene.

Let us now consider first the case of pure graphene. The sites
are undistinguished, i.e. DOS¼LDOS, and therefore we can toggle
off the site index i and calculate the moments. It is easy to see that

• μð0Þ ¼ 1 due to the normalization condition.
• μð1Þ ¼ 0.
• μð2Þ ¼ 3t2 and is proportional to the coordination of each site,
Z¼3 (Fig. 1).

• μð3Þ ¼ 0, because the electron can not return to the original site
with 3 steps. The same holds for any odd spectral moment.
Thus, any bipartite lattice always has a symmetric spectrum, as
for example, in the Penrose lattice (vertex model) [20].

• μð4Þ ¼ 15t4 after counting the four steps paths (Fig. 1), that
revisit and not revisit the original site.

From the previous considerations, s¼2/3 for pure graphene,
and this value corresponds to a bimodal DOS.

If there is a concentration of impurities, C, the problem is much
more difficult. However, here we are interested in impurities
which take one electron from the π orbital leaving almost a hole.
We will model this case assuming t=ε51. It is important to remark
that more detailed calculations show that impurities or vacancies
present a more complex behavior. For example, nitrogen and
boron involve a significant modification of the diagonal elements
of the matrix only, while a vacancy can be modeled [10] using
ε¼ 10 eV and tı; ¼ 1:9 eV (compared with t¼2.7 eV for pristine
graphene). Here we will consider the case t=ε51. In spite of this,
one can include in a natural way a smaller ε by performing a series
expansion in powers of t=ε using the same techniques [21]. Thus,
here we are computing the lowest order term of the serie. This
case corresponds to the split band limit, and bands are suitable to
be studied in a separate way [21]. The reason is that the
wavefunctions of the graphene band do not have amplitude on
impurities, while for the impurity band the opposite is true. This
can be proved in general, and corrections are easy to find using a
t=ε expansion of the wavefunction [21]. Here, we will restrict our
calculations to the graphene band, using a restricted Hamitonian,

Hcc ¼ −t ∑
〈i,j〉∈cc

ji〉〈jj, ð5Þ

where the sum over i and j is carried only over carbon sites
(indicated by the subindex cc), with DOS ρccðEÞ. A similar Hamil-
tonian can be written for the impurity band, Hib with DOS given
by ρibðEÞ. The total DOS is ρðEÞ ¼ ρccðEÞþρibðEÞ. In what follows, we
will consider only the DOS and spectral moments of Hcc, so for
simplicity, we drop any subindex cc. The impurity band can be
easily obtained from Hcc by considering the behavior for concen-
trations 1−C and a shift of the spectrum by ε.

Now we define the moments averages over all disorder
realizations, i.e., for all the possible combinations of impurities
sites (l) and carbon sites as

〈μðnÞ〉¼ ∑
j1 ,…,jn−1≠l

Pði,j1,…,jn−1Þ

�Hi,j1Hj1,j2…Hjn−1 ,i ð6Þ

where Pði,j1,…,jn−1Þ is the probability of each path made only from
carbon atoms.

In order to obtain 〈s〉, we need to calculate 〈μð2Þ〉 and 〈μð4Þ〉. Again
〈μð3Þ〉¼ 0 since the lattice defined on pure carbon sites is bipartite.
Notice that this property only holds for t=ε51. Now we perform
the calculation of the first moments by summing over all statistical
realizations of disorder.

The second moment, 〈μð2Þ〉, can be counted by noting that there
are four possible configurations with impurities and non-
impurities for nearest neighbors (Fig. 2). Following the diagram
in the figure, it is easy to see that the statistical distribution of
configurations is a binomial. It follows that the second moment is
just the average coordination of the network (〈Z〉), obtained from
the binomial distribution:

〈μð2Þ〉¼ t2 ∑
3

Z ¼ 0

3
Z

� �
C3−Z ð1−CÞZZ ¼ 3t2ð1−CÞ: ð7Þ

where Z denote the coordination of a site. This value gives an
excellent approximation to the graphene band width.

For the fourth moment, we chose a Carbon site and again we
divide our count on paths which revisit the original site and those
which do not revisit. Fig. 3 shows schematically the possible

Fig. 1. (Color online) Sketch of the path counting for the honeycomb lattice. Left
panel, a two step path that returns to the original site. Right panel, four step paths
are divided in revisiting (red and orange), and no revisiting (green) to the original
site. The red paths go from the origin to a neighboring site and come back and visit
the same site neighbor. The orange paths go from the origin to a neighboring site,
come back and visit another neighbor.
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