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a b s t r a c t

Within the framework of the phenomenological theory of the second-order phase transitions for the

crystals undergoing structural transformations, induced by irreducible representations with symmetry

group L¼ 3m, all possible types of phase diagrams are constructed. Conditions of realization of each

type of phase diagrams are found in the approach of the thermodynamic potential of the sixth power of

expansion on order parameter components. The equations for calculation of tricritical and triple point

coordinates are received. In the case of spinel-type structure, qualitative agreement between the results

of theoretical calculations of phase diagrams and experimental phase diagrams is observed.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For the first time in his works Landau gave two-dimensional
phase diagrams in which N (N43) phases adjoin in a singular
point vicinity in a plane of two thermodynamic parameters
(temperature, pressure, concentration of components, etc.). Thus,
the Gibbs’ phase rule ‘‘is broken’’ [1–4]. Diagrams with N¼4, 5 are
presented in figures in works [1,2]. These Landau’s results have
been reproduced later in many fundamental theoretical calcula-
tions in the analysis of various types of thermodynamic potentials
(see, for example, [4–7]). It has been established that these special
‘‘N-phase’’ points in terms of Gibbs’ classical thermodynamics are
multicritical ones.

Multicritical points in the theoretical calculations are obtained
at strictly defined relationships between the coefficients of Land-
au’s model of thermodynamic potential. When these relationships
are not fulfilled, multicritical points are split. This process is
accompanied by a transformation of the phase diagram into usual
phase diagrams, studied by classical thermodynamics [7,8].
Therefore, we can assume that Landau’s phase diagrams are
metadiagrams from which a variety of phase diagrams are
derived and studied in the traditional Gibbs’ thermodynamics.

For the first time the phenomenon of a multicritical point
splitting was observed in the study of the thermodynamic
potential which is invariant concerning transformation group
L¼ 3m (C3v) [7]. In general a space group of the structure of
substance is a group of symmetry of a thermodynamic potential
G0 [1,2]. However, if we consider that phase transitions are

induced by one irreducible representation of group G0, then real
symmetry group of a thermodynamic potential will be a factor-
group G0=G1 (where G1 is a kernel of critical irreducible repre-
sentation), which is isomorphic to some point group L [4]. Many
papers in which the results obtained in [7] were used and
developed were published later (see e.g. [4–6,9,10]). However,
all possible types of phase diagrams have not been received in
these studies because of the limitations of methods used.

In this report we present the results of a complete analysis of
the thermodynamic potential of the sixth power of expansion on
order parameter with symmetry L¼ 3m (C3v); we have estab-
lished theoretically all possible types of phase diagrams.
The potential of such symmetry describes the phase transforma-
tions in many classes of materials, including intermetallic com-
pounds, peroxides, spinels, garnets, perovskites, etc. [7].

2. The thermodynamic potential and the types of extremes
induced by symmetry

We represent Landau’s thermodynamic potential as follows:

F¼ a1I1þa2I2
1þa3I3

1þb1I2þ I2
2þd1I1I2

where I1 and I2 are invariants, consisting of two components Z1

and Z2 of an order parameter

I1 ¼ Z2
1þZ

2
2, I2 ¼ Z3

1�3Z1Z
2
2

The order parameter components are transformed by a two-
dimensional irreducible representation of the point group with
symmetry L¼ 3m (C3v).

Possible types of phases are defined by solution types of the
system (@F=@Z1 ¼ 0 and @F=@Z2 ¼ 0) of necessary conditions of the
thermodynamic potential minimum as a function of Z1 and Z2.
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Introducing the designations F1 ¼ @F=@I1 and F2 ¼ @F=@I2, we note
that the following types of solutions of this system and the corre-
sponding types of phases different by symmetry are possible [7]:

1. Z1 ¼ Z2 ¼ 0—highly symmetric phase (I);
2. Z1 ¼�2F1=3F2a0, Z2 ¼ 0—one-parametrical phase, there are

two possibilities: Z1o0 (phase II) and Z140 (phase III);
3. Z1a0, Z2a0, F1 ¼F2 ¼ 0—two-parametrical phase (IV).

The total degeneracy (i.e. the number of different domains) of
phases II (III) and IV is equal to 3 and 6, respectively. These
solutions, however, should satisfy sufficient conditions of mini-
mum F as well, i.e. conditions of thermodynamic stability.
For phase I they are reduced to the inequality a140.
One-parametrical phases conditions of thermodynamic stability
look like

Z1 � ½24ða3þ1ÞZ3
1þ15d1Z2

1þ8a2Z1þ3b1�40

Z1 � ð2Z3
1þd1Z2

1þb1Þo0

(

To analyze the conditions of existence of phase IV it is more
convenient to consider the potential F as a function of invariants;
F¼ f ðI1,I2Þ. Equations F1 ¼F2 ¼ 0 give two possible values I1 and I2,
but it can be shown that sufficient conditions of minimum are
satisfied by only one of them. We have

I1 ¼
�gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2�24a3ð2a1�b1d1Þ

p
12a3

, I2 ¼�
b1þd1I1

2

where g� 4a2�d
2
1.

For the existence of phase IV it is necessary and enough that
the following three conditions are fulfilled:

I140, t� g2�24a3ð2a1�b1d1Þ40, y� I3
1�I2

2Z0

The last requirement is caused by the necessity of existence of the
real values Z2, corresponding to the pair I1 and I2. These condi-
tions correspond to a set of lines (in the phase diagram in
coordinates ‘‘a1–b1’’), which restrict the region of existence of a
two-parametrical phase. The equations of these three lines are

1. I1 ¼ 0—straight line a1 ¼ ðd1=2Þb1 (this line is not present in
the diagram if go0),

2. t¼ 0—straight line a1 ¼ ðd1=2Þb1þg2=48a3,
3. y¼ 0—curve (in general, not continuous)

a1 ¼
1
2ðd1b1�gI1Þ�3a3I2

1 ð1Þ

where I1 are those roots of the equation

4I3
1�d

2
1I2

1�2b1d1I1�b
2
1 ¼ 0 ð2Þ

which satisfy the condition

12a3I1þgZ0 ð3Þ

3. Types of the phase diagrams

The geometric meaning of condition (3) lies in the fact that
branches of the curve y¼ 0 may end up on the line t¼ 0, but may
not cross it. If b1 ¼ 0, from (2) we have double value I1 ¼ 0, and,
according to (1), two branches of the curve y¼ 0 converge in the
multicritical point with coordinates a1 ¼ b1 ¼ 0. In this unique
point, stability regions of one-, two-parametrical and highly
symmetric phases adjoin. But according to (3) it is possible only
if g40. If go0, phase IV does not exist neither at all (since the
condition (3) is never fulfilled) or (if a340) the branches of the
curve y¼ 0 converge in the specified point. It means that the
multicritical point is split and the branches of the curve y¼ 0 end
up on the line t¼ 0. So, the general conditions of the multicritical
point splitting are the following inequalities:

go0

a340

(
ð4Þ

Ordinates of the points of breakage may be obtained from the
equation

a2
1�

g
24a3

ð4a2þd
2
1Þ � a1þ

g
24a3

� �2

�
3a3ð4a2þd

2
1Þ

2
þ4d2

1g
12a3

¼ 0 ð5Þ

(abscisses are found by substituting the ordinates into the
equation t¼ 0).

For the case of g40 and d140 the scheme of the lines limiting
the region of stability of phase IV and the corresponding phase
diagram with the multicritical point are shown in Fig. 1(a, b). It is
seen that if a140 then phase I is stable (alone or in combination
with phase II or III). If a1o0 then phase IV is stable, the transition
from one-parametrical phases into which is the second-order one.
If d1o0, the region of phase IV is shifted in the opposite direction.
The module increase of this coefficient (other conditions being
equal) enlarges the asymmetry of the phase diagram. The case of
d1 ¼ 0 corresponds to the symmetrical diagram.

If conditions (4) are fulfilled, then the combination of signs of
equation (5) roots specifies the type of the multicritical point

Fig. 1. The scheme of lines (a), theoretical phase diagram with a multicritical point (b) and experimental phase diagram of spinel solid solution Cu1�xNixCr2O4 [11] in the

coordinates ‘‘temperature (t)–concentration (x)’’ (c). Here and further on the sites of curve y¼ 0 corresponding to different roots of Eq. (2) are designated on schemes by

different kinds of dashing. On phase diagrams continuous lines designate borders of thermodynamic stability of phases, and dashed lines designate the first-order phase

transitions.
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