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a b s t r a c t

Laser-induced quenching of ferromagnetism in (III1−x,Mnx)V quantum well magnetic semiconductor
is investigated. We propose a mechanism in which an increase of the magnon population of the
ferromagnetic sample can be achieved due to the spin-flip electron–magnon scattering of the quasi-two-
dimensional electron gas inside the quantum well magnetic semiconductor in the presence of intense
laser field. In this case, the laser field imposes a drift velocity to the quasi-two-dimensional electrons so
thatwhenever this drift velocity exceeds the phase velocity of the spinwaves, energy from the quasi-two-
dimensional electrons gained at the expense of the laser field is transferred to themagnon system thereby
increasing the number of magnons (magnon amplification) and as a consequence, a loss of magnetization
is obtained. Application for typical (III1−x,Mnx)V ferromagnetic semiconductor quantum wells such as
Ga1−xMnxAs/AlAs (x ∼ 5%) provides a reasonable loss of magnetization up to 30 % for laser electric field
strengths up to 4× 105 V/cm which is below sample damage threshold field values.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Diluted magnetic semiconductors (DMS’s) based on III–V semi-
conductors dopedwithMn have attracted a lot of interest recently,
after critical temperatures for the onset of ferromagnetism of the
order of 110 K have been found in Ga1−xMnxAs, where x = 0.053
[1–4]. More recently, critical temperatures larger than room tem-
peratures have been reported in Mn-doped GaN, enhancing the
hope for extensive technological applications of these materials
[5]. Unlike in ferromagnetic metals, there is a clear distinction be-
tweenmobile carriers and localized spins (Mn ions), and ferromag-
netic order is realized through their strong coupling (p–d exchange
interaction). This coupling in turn makes magnetic order sensi-
tive to changes in carrier density of the ferromagnetic sample via
external perturbations [6–9], e.g. intense laser irradiation [10,11].
Pumping a magnetic system with ultrashort laser pulses the equi-
librium among the constituents (carrier, magnetic spins and the
lattice) can be strongly altered, triggering a variety of dynamical
processes. Studying these processes can provide estimates for the
timescales and strengths of the various interactions. In fact, it has
been recently reported [12] that spin-flip one magnon–electron
scattering in (III1−x, Mnx)V quantum wells is an ultrafast inter-
action process which occurs with timescale of order 1 ps. The
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spectrum and nature of the spin waves of a (III, Mn)V diluted mag-
netic semiconductor has been reported by some authors [13,14].
On the other hand, the discovery of ultrafast demagnetization
[15,16] produced by such ultrashort laser pulses suggested an ul-
trafast scheme for magneto-optical data writing. The knowledge
of how a laser field can effectively change the magnetic moment
of the sample is still a matter of debate [17–19] and it is of main
interest from technological viewpoints [20].
One possible mechanism for quenching ferromagnetism and

the one we propose to investigate here in the current paper, is
the mechanism in which an increase of the magnon population
of the ferromagnetic sample is achieved due to the spin-flip elec-
tron–magnon scattering of the quasi-two-dimensional electron
gas inside a (III1−x, Mnx)V quantum well magnetic semiconduc-
tor in the presence of an intense laser field. In this case, as we shall
see below, the laser field imposes a drift velocity to the quasi-two-
dimensional electrons so that whenever this drift velocity exceeds
the phase velocity of the spin waves, energy from electrons gained
at the expense of the laser field is transferred to the magnon sys-
tem thereby increasing the number of magnons (magnon amplifi-
cation) and as a consequence, a loss of magnetization is obtained.
The problem of the interaction of intense laser fields with

magnetic semiconductors (e.g. EuO) has been discussed on several
occasions [10,11]. In particular, it has been shown that, under
the influence of the strong radiation field, the magnon damping
in a ferromagnetic semiconductor may change considerably in
magnitude and even in signal (amplification). This mechanism
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involves quanta of the external field and it is important in the
study of non-equilibrium states of the magnon subsystem since
the magnon deviation from equilibrium is, in this case, due to
the energy transfer from electrons to magnons after absorption of
quanta of the external field. The presence of extramagnons into the
sample channeled by the electrons giving up their energy acquired
from the external field makes the magnetization of the sample
relative to the saturation level decreases. Therefore, since most of
the magneto-optical data writing devices depends strongly on the
amount of magnetization of the sample we believe our study is of
importance both from scientific and technological viewpoints.
The physical picture we propose here can be understood as

follows. From the macroscopic standpoint a ferromagnet may be
looked upon as a continuous medium characterized by a magnetic
moment density (magnetization) EM(Er). One can show that for
weak oscillation of EM(Er) about its equilibrium direction, say the
z-direction, the value of its z-component, Mz , can be expressed in
terms of magnon creation and annihilation operators bĎ

Eq and bEq, as
[21].

Mz = M0 −
µ

V

∑
Eq

〈
NEq
〉
, (1)

where NEq = b
Ď
EqbEq, M0 is the magnetization of the whole sample

if there are no magnons in it, Mz is the magnetization of the
sample when magnons are present, V is the crystal volume and∑
Eq

〈
NEq
〉
is the total number of ferromagnons each ofwhich reduces

the sample‘s magnetic moment by µ. Here 〈· · ·〉 means statistical
average. It then follows that if one excites spin waves by some
external action (laser) to the extent of causing amplification
(growth) of the magnon population, the magnetization of the
sample relative to the saturation level will decrease.
In order to substantiate the above physical picture and to

get the size of the demagnetization effect we need to evaluate
the amplified magnon population due to the action of the
intense laser field. To be more specific, we have considered the
interaction of the quasi-two-dimensional electrons with localized
Mn spins (the density of Mn spins participating in ferromagnetic
order is 1021 cm−3) in a Ga1−x MnxAs (33 nm)/AlAs (820 nm)
heterostructure with Curie temperature of the order of 110 K in
the presence of an intense laser field of frequency ω. We shall
then calculate firstly, the matrix elements of electron–magnon
scattering, then give the rate of change of the magnon population
and the estimate the threshold value of the field strength for
magnon amplification. The change in the magnetization in the
magnetic semiconductor heterostructure is finally calculate by
making use of Eq. (1).

2. Formalism

Let there be the electromagnetic plane wave propagating
normal to the interface and penetrating well into the sample.
Suppose that its wavelength is far great than both the men free
path of the electrons and the width of the interfacial potential well
so that the spatial dependence of the laser wave can be neglected.
This assumption is not essential, but can simplify themathematical
treatment considerably.
To calculate the matrix elements for electron–magnon scatter-

ing, we solve the Schrödinger equation for the electron wave func-
tion Ψ (Er, t),

ih̄
∂

∂t
Ψσ (Er, t) =

1
2m

(
Ep−
e
c
EA(t)

)2
Ψσ (Er, t)+ V (z)Ψσ (Er, t) (2)

where the vector potential EA(t) can be expressed as

EA = A0Ee‖ cosωt, (3)
andwhere the scalar potentialV (z), which represents the potential
in the direction perpendicular to the interface, is given as

V (z) =
{
0, 0 < z < D
∞, 0 > z, z > D. (4)

Here, Ee‖ is the unit vector parallel to the interface,m is the electron
effective mass, D is the width of the interfacial potential well
and σ = −1(+1) for spin-up (-down) electron subband in the
magnetic semiconductor heterostructure. The solution of Eq. (2) is

|Ek‖, l, σ 〉 = ΨEk‖,l,σ (Er, t) =
{
2
DA

}1/2
sin
(
π l
D
z
)
exp

{
iEk‖ · Er‖

−
i
h̄

∫ t

0

[
E0l2 +

1
2
σ h̄ωs +

1
2

(
h̄Ek‖ −

e
c
EA(τ )

)2
dτ
]}
, (5)

where E0 = h̄2
2m

(
π
D

)2
, ωs = N0αSx/h̄, is the spin-splitting

frequency between spin subbands of the magnetic semiconductor
quantum well, N0α is the spin-flip electron–magnon interaction
strength, N0 being the density of Mn spins, S is the Mn spin (S =
5/2) and x is the molar fraction of Mn spins in the magnetic
quantum well. Here Ek‖ is the component of the electron wave
vector parallel to the interface, l (l = 1, 2, 3 . . .) are the quantum
numbers describing the electron motion perpendicular to the
interface, and the area A accounts for the normalization of this
wave function.
As for the localized spin system [12] the field operator of the

magnons can be written as

φ(Eq, ωEq; Er, t) = Ce(iEq·Er−iωEqt) (6)

where Eq =
(
Eq‖, qz

)
is the magnon wave vector, ωEq is the magnon

frequency, and

C =
(
S
2Nc

)1/2
N0αx, (7)

Nc being the number of cation sites. Here, Eq‖ =
(
qx, qy

)
.

As we know, in bulk magnetic materials, spin waves are
free to travel in all three dimensions resulting in a continuous
dispersion of the spinwave energy h̄ωEqwith the three-dimensional
momentum q. If one restricts one of the dimensions (say the z
direction) going to the thin film (at nanometer scale) geometry,
due to the confinement of the two boundaries (interfaces), spin
waves are scattered back and forth between the boundaries. If the
film thickness equals the integral multiple of the half wavelength
projected along z, standing waves are formed [22]. Such standing
spin waves can be regarded as oscillations of the magnetization
which are nonuniform in the direction normal to the surface and
which travel freely in the two other dimensions. Therefore, the
dispersion relation is given by a series of spin wave branches
quantized in the momentum perpendicular to the plane qz and
continuous in the momenta in the plane qx and qy. For the sake
of simplicity we disregard the effect of magnon confinement and a
continuous dispersion of the spin wave energy h̄ωEq with the three-
dimensional momentum q is assumed.
Treating the electron–magnon interaction as a perturbation, the

transition matrix elements between the initial state |Ek‖, l, σ 〉 and
the final state |Ek′

‖
, l′, σ ′〉 accompanied by the emission of magnons

is

a(Ek′
‖
, l′, σ ′ → Ek‖, l, σ ) = −

i
h̄

∫
d2Er‖

∫
dz
∫
dt

×

〈
Ek′
‖
, l′, σ ′

∣∣φ(Eq, ωEq; Er, t)∣∣ Ek‖, l, σ 〉 . (8)
By substituting Eqs. (5) and (6) into Eq. (8) and using the formula
of Bessel-function expansion, we get

exp [−ix sin(ωt)] =
+∞∑
n=−∞

Jn(x) exp(−inωt). (9)



Download	English	Version:

https://daneshyari.com/en/article/1593288

Download	Persian	Version:

https://daneshyari.com/article/1593288

Daneshyari.com

https://daneshyari.com/en/article/1593288
https://daneshyari.com/article/1593288
https://daneshyari.com/

