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a b s t r a c t

We study the change in condensation energy from a single pair of fermionic atoms to a large number
of pairs interacting via the reduced BCS potential. We find that the energy-saving due to correlations
decreases when the pair number increases because the number of empty states available for pairing gets
smaller (‘‘moth-eaten effect’’). However, this decrease dominates the 3D kinetic energy increase of the
same amount of noninteracting atoms only when the pair number is a sizable fraction of the number
of states available for pairing. As a result, in BEC–BCS crossover of 3D systems, the condensation energy
per pair first increases and then decreases with pair number while in 2D, it always is controlled by the
‘‘moth-eaten effect’’ and thus simply decreases.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It was known for a long time that a 3D system with a weak
attractive potential cannot sustain a bound state. Cooper however
showed that in the presence of a frozen Fermi core, a pair of
electrons with opposite spins can form a bound state with zero
total momentum, no matter how weak the attraction is [1].
Note that this ‘‘single pair’’ state already is a many-body state
because, even if the frozen core electrons do not interact, they
still, because of Pauli blocking, provide a finite density of states
which is of importance for pairing. Turning to more than one
pair is difficult due to the Pauli exclusion principle between a
fixed number of paired electrons. To overcome this difficulty,
Bardeen, Cooper and Schrieffer proposed an ansatz for the many-
body state in the grand canonical ensemble – with pair number
not fixed – which in the presence of a frozen core, leads to an
energy lower than the free electron energy, even in the limit of
an arbitrarily small potential [2]. Gor’kov and Melik-Barkhudarov
then showed that the frozen core is not mandatory, provided that
one uses a renormalized attraction measured through the low
energy scattering amplitude [3]. Later on, Eagles [4], Leggett [5] and
also Nozières and Schmitt-Rink [6] extended the BCS idea to bridge
molecular BECwith Cooper pairing. To do it, they vary the potential
amplitude while using a BCS-like grand canonical wave function
without frozen core, i.e., all k states are involved. Their work raises
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the complementary question: how, when the potential is fixed but
too weak to hold a bound state, the solution evolves from a single
unbound pair to a very large number of pairs which always have a
bound state solution. The grand canonical nature of the BCS ansatz
makes it inherently many-body, so a direct connection to the one-
pair solution is not really possible.

Five years after the BCS milestone paper, Richardson [7] and
Gaudin [8], succeeded to write the exact eigenstate for N pairs
interacting via the reduced BCS potential, in terms ofN parameters
solution of N coupled equations. The condensation energy
obtained from the BCS ansatz, has been recovered in the infinite
N limit [9–11].

A decade ago, one of us has developed a new framework [12]
for many-body effects between composite bosons. Most of its
applications dealt with semiconductor excitons. Recently, we
have extended this framework to Cooper pairs and rederived
Richardson–Gaudin equations [13]. We have also succeeded to
obtain an analytical solution of these equations [14,15] whose
energy exactly matches the energy obtained through the BCS
ansatz. The Richardson–Gaudin approach is all the most suitable
to investigate the change in condensation energy from 1 to N
pairs when the pairing potential stays constant, because it allows
us to handle a fixed number of pairs with Pauli blocking treated
exactly.

When one electron pair is added to a system already having
N pairs, the Pauli exclusion principle shows up in two different
ways. (i) Pairing (binding) has to use a smaller phase space, so that
the energy saving per pair due to the attracting potential must be
smaller in the case of (N + 1) pairs than for N pairs since they
have less freedom to construct themost favorable correlated state.
This binding decrease is the so-called ‘‘moth-eaten effect’’ [14]. (ii)
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In the absence of attraction, the additional fermion pair fills the
next k-level due to Pauli blocking; so its energy also depends on
theN other pairs. Of course, these two effectsmust be handled self-
consistently. However, it is enlightening to separate them in order
to build some intuition. The binding energy decrease resulting
from the ‘‘moth-eaten effect’’ driven by Pauli blocking, scales as
N/NΩ , where N is the number of pairs at hands and NΩ the
maximum number of pairs in the potential layer which scales as
the sample volume. By contrast, the average kinetic energy for free
pairs scales as ϵF , i.e., (N/L3)2/3, where L3 is the sample volume in
3D. When N is small, this dominates the ‘‘moth-eaten effect’’, so,
the condensation energy per pair, which results from the energy
difference without and with potential, must increase. For larger N ,
however, the ‘‘moth-eaten effect’’ dominates and the condensation
energy per pair finally decreases.

This understanding points out an important aspect of the
BEC–BCS crossover. It is usually introduced at the two-body
level, a bound-state appearing when the attraction passes some
threshold. The many-body solution is then seen as the effective
potential threshold turning to zero for the system to condense
at vanishing potential. The present work proposes a somewhat
different understanding which better bridges 2-body to N-body
systems in a BEC–BCS crossover: as the pair number increases, a
correlated state develops at a lower but still finite potential.

The paper is organized as follows.
In Section 2.1, we describe the model. We recall the single pair

case and then turn to a qualitative understanding of the many-
pair system through the condensation energy change when the
pair number increases. We show that this change is quite different
in 2D, with a constant density of state, and 3D with a density of
state which cancels at zero energy. To support this understanding,
in Section 3, we carefully study two pairs through the resolution
of the corresponding Richardson–Gaudin equations with a

√
ϵ

density of state: we show that a binding indeed develops when
turning from one to two pairs for a potential set exactly equal to
the threshold value for one pair. We then conclude in Section 4.

2. Physical understanding

2.1. The model

We considerN pairs of fermionic atomswith creation operators
aĎk and bĎk, ruled by the Hamiltonian H = H0 + VBCS. For samemass
atoms, the kinetic part H0 reads

H0 =

−
k

ϵk(a
Ď
kak + bĎkbk). (2.1)

We take as potential the reduced BCS potential of standard
superconductivity, but without its frozen core, namely

VBCS = −v
−
kk′

wk′wkβ
Ď
k′βk (2.2)

where β
Ď
k = aĎkb

Ď
−k while wk = 1 for 0 < ϵk < Ω and zero

otherwise, so attraction between zero-moment pairs acts from
zero to a sharp cutoff Ω . While this cut-off bears no connection
with phonon energies, we can still relate it to a physical quantity,
the scattering length, as shown below.

2.2. One pair

The energy E1 of a single pair in this potential follows from
Cooper’s equation

1
v

=

−
k

ωk

2ϵk − E1
≡ S(E1). (2.3)

(i) In 2D, the density of state is constant. By transforming the
sum over k into an integral, we get for negative E,

S(2D)(E < 0) = ρ

∫ Ω
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ρ

2
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. (2.4)

This function tends to infinity when E → 0− and to zero as
ρΩ/(−E)when E → −∞. A bound state, solution of Eq. (2.3), thus
exists no matter how weak v is. It reads E(2D)

1 = −2Ωσ/(1 − σ)

with σ = e−2/ρv . Note that while ρ increases linearly with sample
volume, ρv stays constant.

(ii) In 3D, the density of states can be written as ρ(ϵ) =

ρ
√

ϵ/Ω where ρ now is the density of state at the potential upper
boundary. So

S(3D)(E < 0) = ρ

∫ Ω
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2Ω
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(2.5)

tends to ρ when E → 0− and to zero as 2
3ρΩ/(−E) when

E → −∞. A bound state thus exists for v larger than a threshold
vth = 1/ρ. For a potential just above threshold, the single pair
energy tends to zero as E(3D)

1 ≈ −8(ρv−1)2Ω/π2 while far above
threshold E(3D)

1 ≈ −
2
3ρvΩ .

(iii) Using this result, we can relate the s-wave scattering length
as, commonly used for cold gases, to the potential cut-offΩ via the
density of state at this cut-off, ρ = mL3

√
2mΩ/2π2. Indeed, for

fermion pairs interacting via VBCS, the T -matrix for S-wave reduces
to

T 0
k =

−vωk

1 − vS(2ϵk + i0+)
(2.6)

with, from Eq. (2.5), S(3D)(2ϵk + i0+) ≃ ρ(1 + iπ
√

ϵk/4Ω) for
ϵk ≪ Ω . The scattering length then follows from the scattering
amplitude f 0k = −as/(1 + ikas) which depends on the T -matrix
as f 0k = −mL3T 0

k /4π . So, as ≃ mL3v/4π(ρv − 1). For v slightly
above the single pair threshold 1/ρ, we find as positive with a
pair binding energy Eb ≈ −1/ma2s , while below threshold, as is
negative and no bound state exists.

2.3. N pairs

Richardson [7] and Gaudin [8] showed that the energy of N
fermion pairs interacting via VBCS reads as EN = R1 + · · · + RN
where the Ri’s follow from N coupled equations

1
v

=

−
k

wk

2ϵk − Ri
+

−
j≠i

2
Ri − Rj

. (2.7)

(i) 2D systems: Very recently [14,16], we have derived a compact
solution of these equations when the density of state is constant
above a 3D frozen core, as for the N Cooper pairs in standard BCS
superconductivity. Using this result for 2D systems which have a
constant density of states whatever the electron energy is, we get

E(2D)
N = N E(2D)

1 +
N(N − 1)

ρ

1 + σ

1 − σ
(2.8)

within under-extensive terms in (N/ρ)n. The energy difference
without andwith potential leads to a condensation energy per pair
ϵN = [EN(v = 0) − EN ] /N equal to

ϵ
(2D)
N =

[
1 −

N − 1
NΩ

]
2σ

1 − σ
Ω (2.9)
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