Solid State Communications 152 (2012) 90-94

journal homepage: www.elsevier.com/locate/ssc

Contents lists available at SciVerse ScienceDirect

Solid State Communications

I
i

Competition between BCS-pairing and “moth-eaten effect” in BEC-BCS crossover

Guojun Zhu?, Monique Combescot *P*

2 Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL, 61801, United States
b Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, Tour 22, 4 place Jussieu, 75005 Paris, France

ARTICLE INFO ABSTRACT

Article history:

Received 15 April 2011

Received in revised form

11 August 2011

Accepted 26 October 2011

by S. Miyashita

Available online 4 November 2011

We study the change in condensation energy from a single pair of fermionic atoms to a large number
of pairs interacting via the reduced BCS potential. We find that the energy-saving due to correlations
decreases when the pair number increases because the number of empty states available for pairing gets
smaller (“moth-eaten effect”). However, this decrease dominates the 3D kinetic energy increase of the
same amount of noninteracting atoms only when the pair number is a sizable fraction of the number
of states available for pairing. As a result, in BEC-BCS crossover of 3D systems, the condensation energy

per pair first increases and then decreases with pair number while in 2D, it always is controlled by the
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“moth-eaten effect” and thus simply decreases.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It was known for a long time that a 3D system with a weak
attractive potential cannot sustain a bound state. Cooper however
showed that in the presence of a frozen Fermi core, a pair of
electrons with opposite spins can form a bound state with zero
total momentum, no matter how weak the attraction is [1].
Note that this “single pair” state already is a many-body state
because, even if the frozen core electrons do not interact, they
still, because of Pauli blocking, provide a finite density of states
which is of importance for pairing. Turning to more than one
pair is difficult due to the Pauli exclusion principle between a
fixed number of paired electrons. To overcome this difficulty,
Bardeen, Cooper and Schrieffer proposed an ansatz for the many-
body state in the grand canonical ensemble - with pair number
not fixed - which in the presence of a frozen core, leads to an
energy lower than the free electron energy, even in the limit of
an arbitrarily small potential [2]. Gor'’kov and Melik-Barkhudarov
then showed that the frozen core is not mandatory, provided that
one uses a renormalized attraction measured through the low
energy scattering amplitude [3]. Later on, Eagles [4], Leggett [5] and
also Noziéres and Schmitt-Rink [6] extended the BCS idea to bridge
molecular BEC with Cooper pairing. To do it, they vary the potential
amplitude while using a BCS-like grand canonical wave function
without frozen core, i.e., all k states are involved. Their work raises
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the complementary question: how, when the potential is fixed but
too weak to hold a bound state, the solution evolves from a single
unbound pair to a very large number of pairs which always have a
bound state solution. The grand canonical nature of the BCS ansatz
makes it inherently many-body, so a direct connection to the one-
pair solution is not really possible.

Five years after the BCS milestone paper, Richardson [7] and
Gaudin [8], succeeded to write the exact eigenstate for N pairs
interacting via the reduced BCS potential, in terms of N parameters
solution of N coupled equations. The condensation energy
obtained from the BCS ansatz, has been recovered in the infinite
N limit [9-11].

A decade ago, one of us has developed a new framework [12]
for many-body effects between composite bosons. Most of its
applications dealt with semiconductor excitons. Recently, we
have extended this framework to Cooper pairs and rederived
Richardson-Gaudin equations [13]. We have also succeeded to
obtain an analytical solution of these equations [14,15] whose
energy exactly matches the energy obtained through the BCS
ansatz. The Richardson-Gaudin approach is all the most suitable
to investigate the change in condensation energy from 1 to N
pairs when the pairing potential stays constant, because it allows
us to handle a fixed number of pairs with Pauli blocking treated
exactly.

When one electron pair is added to a system already having
N pairs, the Pauli exclusion principle shows up in two different
ways. (i) Pairing (binding) has to use a smaller phase space, so that
the energy saving per pair due to the attracting potential must be
smaller in the case of (N + 1) pairs than for N pairs since they
have less freedom to construct the most favorable correlated state.
This binding decrease is the so-called “moth-eaten effect” [ 14]. (ii)
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In the absence of attraction, the additional fermion pair fills the
next k-level due to Pauli blocking; so its energy also depends on
the N other pairs. Of course, these two effects must be handled self-
consistently. However, it is enlightening to separate them in order
to build some intuition. The binding energy decrease resulting
from the “moth-eaten effect” driven by Pauli blocking, scales as
N/Ng, where N is the number of pairs at hands and N the
maximum number of pairs in the potential layer which scales as
the sample volume. By contrast, the average kinetic energy for free
pairs scales as e, i.e., (N/L*)*/3, where L3 is the sample volume in
3D. When N is small, this dominates the “moth-eaten effect”, so,
the condensation energy per pair, which results from the energy
difference without and with potential, must increase. For larger N,
however, the “moth-eaten effect” dominates and the condensation
energy per pair finally decreases.

This understanding points out an important aspect of the
BEC-BCS crossover. It is usually introduced at the two-body
level, a bound-state appearing when the attraction passes some
threshold. The many-body solution is then seen as the effective
potential threshold turning to zero for the system to condense
at vanishing potential. The present work proposes a somewhat
different understanding which better bridges 2-body to N-body
systems in a BEC-BCS crossover: as the pair number increases, a
correlated state develops at a lower but still finite potential.

The paper is organized as follows.

In Section 2.1, we describe the model. We recall the single pair
case and then turn to a qualitative understanding of the many-
pair system through the condensation energy change when the
pair number increases. We show that this change is quite different
in 2D, with a constant density of state, and 3D with a density of
state which cancels at zero energy. To support this understanding,
in Section 3, we carefully study two pairs through the resolution
of the corresponding Richardson-Gaudin equations with a /e
density of state: we show that a binding indeed develops when
turning from one to two pairs for a potential set exactly equal to
the threshold value for one pair. We then conclude in Section 4.

2. Physical understanding

2.1. The model

We consider N pairs of fermionic atoms with creation operators
a,T( and blT(, ruled by the Hamiltonian H = Hy + Vjcs. For same mass
atoms, the kinetic part Hy reads

Ho =) ew(ajay + biby). (2.1)
k

We take as potential the reduced BCS potential of standard
superconductivity, but without its frozen core, namely

Vpes = —v Z Wi WAy Br (2.2)
KK’

where ,311 = albik while wy = 1for0 < ¢ < £ and zero
otherwise, so attraction between zero-moment pairs acts from
zero to a sharp cutoff £2. While this cut-off bears no connection
with phonon energies, we can still relate it to a physical quantity,
the scattering length, as shown below.

2.2. One pair
The energy E; of a single pair in this potential follows from
Cooper’s equation

1 [
— = Z —  =S(E). (2.3)
v m 26k — E]

(i) In 2D, the density of state is constant. By transforming the
sum over K into an integral, we get for negative E,

2 d 202 —E
SD(E < 0y = p/ € _° 1r1< ) . (2.4)
y 2€—E 2 _E

This function tends to infinity when E — 0_ and to zero as
pS§2/(—E)whenE — —oo.Abound state, solution of Eq. (2.3), thus
exists no matter how weak v is. It reads EfD) = 2R0/(1—0)
with ¢ = e~%/#¥, Note that while p increases linearly with sample
volume, pv stays constant.

(ii) In 3D, the density of states can be written as p(e) =
p+/€/52 where p now is the density of state at the potential upper
boundary. So
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tends to p when E — 0_ and to zero as %p.Q/(—E) when
E — —o0. A bound state thus exists for v larger than a threshold
v, = 1/p. For a potential just above threshold, the single pair
energy tends to zero as E\> &~ —8(pv — 1)282 /7% while far above

threshold E>” ~ —2pv 2.

(iii) Using this result, we can relate the s-wave scattering length
as, commonly used for cold gases, to the potential cut-off §2 via the
density of state at this cut-off, p = mL*+/2m2 /272, Indeed, for
fermion pairs interacting via Vgcs, the T-matrix for S-wave reduces
to

TO N —Vwg
k= 1 . c/h. 1L in N
1 —vS(2¢, +i04)

with, from Eq. (2.5), SC? (2¢, + i0,) =~ p(1 + in\/€,/482) for
€ < £2. The scattering length then follows from the scattering
amplitude fko = —as/(1 + ikas) which depends on the T-matrix
as fQ = —mL*T /4. So, a; >~ mLv/4w (pv — 1). For v slightly
above the single pair threshold 1/p, we find a; positive with a
pair binding energy E, =~ —1/ma§, while below threshold, as is
negative and no bound state exists.

(2.6)

2.3. N pairs

Richardson [7] and Gaudin [8] showed that the energy of N
fermion pairs interacting via Vpcs reads as Ey = Ry + --- + Ry
where the R;’s follow from N coupled equations

1 Wk 2
—=y 4 ) (2.7)
v Xk:ZEk—R,‘ ;Ri—Rj

(i) 2D systems: Very recently [ 14,16], we have derived a compact
solution of these equations when the density of state is constant
above a 3D frozen core, as for the N Cooper pairs in standard BCS
superconductivity. Using this result for 2D systems which have a
constant density of states whatever the electron energy is, we get

NN-—1D1+0

E(ZD) — NE(ZD) +
N 1 P 1—o

(2.8)
within under-extensive terms in (N/p)". The energy difference

without and with potential leads to a condensation energy per pair
ey = [Ex(v = 0) — Ey] /N equal to

e’ = [1 -

N—-17 20
} (2.9)
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