Contents lists available at ScienceDirect

Solid State Communications

journal homepage: www.elsevier.com/locate/ssc

M.I. Afanasov^a, A. Wattiaux^b, C. Labrugère^b, P.B. Fabritchnyi^{a,*}, C. Delmas^b

^a Department of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow V-234, Russian Federation ^b Institut de Chimie de la Matière Condensée de Bordeaux, CNRS-Université de Bordeaux, 87, avenue du Dr. A. Schweitzer, 33608 Pessac Cedex, France

ARTICLE INFO

Article history: Received 25 March 2009 Received in revised form 18 May 2009 Accepted 20 May 2009 by C. Lacroix Available online 27 May 2009

PACS: 61.72.sh 68.35.Do 75.50.Ee 76.80.+y

Keywords: A. Magnetically ordered materials B. Chemical synthesis C. Point defects D. Nuclear resonances

ABSTRACT

In situ ¹¹⁹Sn Mössbauer measurements show that annealing in hydrogen atmosphere of co-precipitated chromium and lutetium hydroxides, doped with 0.2 at.% Sn⁴⁺, results in the formation of Sn²⁺ cations on the surface sites of LuCrO₃ microcrystals. Such a distribution of dopant cations is consistent with the anomalously high concentration of tin revealed by X-ray photoelectron spectroscopy (XPS). The ¹¹⁹Sn spectrum recorded above the Néel point of LuCrO₃ attests to the distribution of Sn^{2+} ions over two kinds of site. For both of them, the isomer shift and quadrupole splitting values agree with those previously reported for 119 Sn²⁺ on surface sites of several oxides other than the perovskite-type one. The instantaneous oxidation of tin upon contact with ambient air did not allow us to characterize the cationic surrounding of Sn^{2+} by measurements involving sample transfer into a liquid-helium cryostat. Relevant information is obtained for the $Sn^{2+\rightarrow 4+}$ oxidized species located on the sites with unchanged *cationic* surroundings. The spectrum recorded at 4.2 K shows that nearly two-thirds of the $Sn^{2+\rightarrow 4+}$ species are spin-polarized to different extents. Comparison with Mössbauer parameters reported for ¹¹⁹Sn⁴⁺ ions sitting in the regular Cr-substitution site in the bulk of LuCrO₃ allows us to ascribe the diffuse magnetic contribution to a distribution of $Sn^{2+\rightarrow 4+}$ species over Cr-substitution sites with lower (than in the bulk) number of neighboring Cr^{3+} ions. The presence of an additional non-magnetic component in the spectrum of $Sn^{2+\rightarrow 4+}$ ions points to the location of the remaining Sn^{4+} ions and, very likely, the predecessor Sn^{2+} ones. on Lu-substitution sites with magnetically compensated ($2Cr \uparrow +2Cr \downarrow$) surroundings.

© 2009 Published by Elsevier Ltd

1. Introduction

At present, Sn^{2+} dopant cations have been successfully stabilized, as isolated impurity centres, on surface sites of several metal oxides having the corundum structure [1–3], the ilmenite structure (MgTiO₃) [4] or the rock salt structure (MgO) [5]. In such cases ¹¹⁹Sn Mössbauer spectroscopy offers the unique possibility to study processes occurring at the gas–solid interface [6]. However, no material with a perovskite-related structure has so far been investigated as a substrate for a surface-located ¹¹⁹Sn spectroscopic probe. Of the perovskites to be tested, RCrO₃ antiferromagnetic rare-earth (R) orthochromites seem to be particularly suitable. In fact, most of them are stable upon annealing in hydrogen atmosphere (needed for stabilization of Sn²⁺ on surface sites of previously studied oxides [1–5]). Besides, Cr³⁺ (3d³) cations strongly prefer an octahedral oxygen

* Corresponding address: M.V. Lomonosov Moscow State University, Department of Chemistry, Vorob'evy Gory, 1, Building 3, 119899 Moscow V-234, Russian Federation. Tel.: +7 495 9393217; fax: +7 495 9393187.

E-mail address: pf@radio.chem.msu.ru (P.B. Fabritchnyi).

surrounding; to retain their coordination number upon annealing in hydrogen, surface-located Cr³⁺ ions are expected to prohibit the neighbouring Sn^{2+} species from reducing to metallic β -Sn [1, 2]. Another advantage of the orthochromites is due to the spin polarization of tin by neighbouring Cr³⁺ cations, revealed by the appearance of hyperfine splitting patterns in ¹¹⁹Sn Mössbauer spectra recorded at low temperatures ($T < T_N$). The occurrence of such a spectrum thus unambiguously demonstrates the insertion of the dopant into the host structure, even though the doping level is as low as 0.1 at.%. Moreover, the value of the magnetic hyperfine field H transferred at ¹¹⁹Sn becomes a parameter specifically sensitive to the cationic surrounding of the diamagnetic dopant. In order to begin studying the behaviour of tin in RCrO₃ perovskites we have chosen LuCrO₃. In this compound, with a Néel temperature $T_N = 112$ K [7], Sn⁴⁺ ions are known to possess the largest saturation value of H = 85 kOe [8] and thus provide better resolution of ¹¹⁹Sn Zeeman splitting patterns as compared to those reported for other rare-earth orthochromites. It is noteworthy that such perovskite-type oxides are utilized in practice for gas sensing and are known to display catalytic activity in oxidation reactions (e.g. combustion of CO or C_3H_4) [9]. This should make possible the elucidation of the eventual impact of the tin-dopant on the relevant surface properties.

^{0038-1098/\$ -} see front matter © 2009 Published by Elsevier Ltd doi:10.1016/j.ssc.2009.05.030

2. Experimental

To achieve better homogeneity of the dopant distribution in the sample, the procedure of synthesis involved a co-precipitation stage. Aqueous ammonia solution was used to obtain a hydroxide precursor co-precipitated from a hot acidified solution containing Lu^{3+} , Cr^{3+} and Sn^{4+} (enriched to 92% in the ¹¹⁹Sn isotope) ions in molar ratio 1:1:0.004. The precursor was filtered out, washed with distilled water and dried at 150 °C.

To obtain a LuCrO₃ sample containing ¹¹⁹Sn probe cations in the bulk of crystallites ("the bulk-doped LuCrO₃"), the precursor was calcined in air at 700 °C for 2 h, pelletized and annealed at 950 °C for 36 h. To obtain a LuCrO₃ sample containing ¹¹⁹Sn probe cations located immediately on the surface of crystallites ("the surface-doped LuCrO₃"), the hydroxide precursor was calcined under hydrogen flow, first at 300 °C for 1 h, and then at 900 °C for 21 h. In all cases, XRD analysis of the resulting material revealed the presence of a single crystalline phase, orthorhombically distorted LuCrO₃ perovskite [10–12].

¹¹⁹Sn spectra were recorded using a conventional Mössbauer spectrometer operating in constant acceleration mode with a $Ca^{119m}SnO_3$ source (all the isomer shift δ values refer to a BaSnO₃ absorber at 295 K). Spectra at 4.2 K and 295 K were recorded using a regular variable-temperature cryostat. *In situ* Mössbauer measurements under H₂ were performed at 295 K only, using a quartz reactor equipped with a lateral thin-window sample cell [13]. Spectra were analysed using standard computer software.

XPS measurements were made using an ESCALAB VG 220i-XL spectrometer (non-monochromatic MgK_{α} exciting radiation, $h\nu = 1253.6 \text{ eV}$) with powder samples pressed on indium plate supports. Atomic concentrations were calculated from the integrated intensities of Sn3d5 ($E_b = 486.6 \text{ eV}$), Cr2p3 ($E_b =$ 576.3 eV) and Lu4d5 ($E_b = 196.4 \text{ eV}$). High-resolution spectra were fitted and quantified using the AVANTAGE software provided by ThermoFischer Scientific, each spectrum being referenced to the Sn3d5 maximum at 486.6 eV.

3. Results and discussion

3.1. ¹¹⁹Sn Mössbauer spectra of the bulk-doped LuCrO₃

In the paramagnetic region at 295 K, the Mössbauer spectrum (Fig. 1a) could at first glance be reasonably fitted assuming the presence of a unique doublet. However, more careful analysis reveals the occurrence of very weak complementary absorption at positive velocities. The values of the isomer shift $\delta = 0.09$ mm/s and quadrupole splitting $\Delta = 0.46$ mm/s relative to the main spectral component (Table 1) thus show that the great majority of dopant atoms preserve their initial tetravalent state and occupy a slightly distorted site, as expected for a Sn⁴⁺ ion on the O_h substitution position in the LuCrO₃ lattice. As to the secondary doublet contribution ($\delta = 2.68$ mm/s and $\Delta = 0.22$ mm/s), it is assignable to trace amounts of divalent tin, exhibiting more pronounced temperature dependence of the recoil-free *f* fraction as compared to that for tetravalent tin.

In the antiferromagnetic region at 4.2 K ($T \ll T_N$), the Mössbauer spectrum (Fig. 1b) reveals the spin polarization of most of the dopant ions and thus ascertains their insertion in LuCrO₃. The hyperfine parameters of various subspectra observed at 4.2 K are given in Table 1. The value of the hyperfine field for the main spectral component (59%), $H_{\text{bulk}} = 89$ kOe is in fair agreement with the value of H = 85 kOe quoted earlier [8] for a Sn⁴⁺-doped LuCrO₃ sample prepared by the conventional ceramic method. According to [8], the sextet associated with H_{bulk} should, therefore, be assigned to a Sn⁴⁺ ion located on an O_h site of the LuCrO₃ lattice (Fig. 2). The presence of three other

Fig. 1. Mössbauer spectra of 119 Sn⁴⁺ ions (0.04 at.%) in the bulk of LuCrO₃ polycrystals measured at 295 K (a) and 4.2 K (b).

Table 1

Mössbauer spectroscopic parameters of the 119 Sn probe located in the bulk and on the surface of LuCrO₃ polycrystals.

T (K)	δ (mm/s)	Δ (mm/s)	Γ (mm/s)	H (kOe)	A (%)
Bulk-do	ped LuCrO3				
295	0.09 ± 0.01	0.46 ± 0.02	0.95 ± 0.02	-	96
	2.68 ± 0.05	2.2 ± 0.1	0.95 ± 0.02		4
4.2	0.17 ± 0.05	-	0.98 ± 0.05	89 ± 1	59
	0.17 ± 0.05	-	0.9 ± 0.1	75 ± 3	5
	0.17 ± 0.05	-	0.9 ± 0.1	61 ± 3	9
	0.17 ± 0.05	-	0.9 ± 0.1	16 ± 2	12
	0.17 ± 0.05	0.46 ± 0.05	0.9 (fixed)	-	7
	2.84 ± 0.05	2.2 ± 0.1	0.9 (fixed)	-	8
Surface	-doped LuCrO ₃ (in	ı situ measuremen	ts)		
295	2.74 ± 0.02	1.94 ± 0.18	0.85 (fixed)	_	70
	2.65 ± 0.03	2.38 ± 0.15	0.85 (fixed)	-	30
Surface	-doped LuCrO ₃ (a)	fter exposure to aii	r)		
295	0.02 ± 0.01	0.9 ± 0.1	0.85 ± 0.02	-	53
	0.04 ± 0.01	0.4 ± 0.1	0.85 ± 0.05	-	43
	2.8 ± 0.1	2.0 ± 0.1	0.85 (fixed)	-	4
4.2	0.1 ± 0.1	-	1.1 ± 0.1	13	20
	0.1 ± 0.1	-	1.1 ± 0.1	25	7
	0.1 ± 0.1	-	1.1 ± 0.1	40	24
	0.1 ± 0.1	-	1.1 ± 0.1	65	14
	0.1 ± 0.1	0.6 ± 0.1	1.0 ± 0.1	-	29
	2.9 ± 0.1	2.1 ± 0.1	1.0 (fixed)	-	6

Note. The isomer shift at 4.2 K, $\delta_{\rm 4.2~K}=\delta_{\rm 295~K}+\delta_{\rm SODS}$ (the second-order Doppler shift).

minor-contribution spectral components with H < 89 kOe could be indicative of the formation of {Sn⁴⁺ dopant– V_{Cr} chromium charge-balance vacancy} pairs and their agglomerates within the chromite lattice, as was, for instance, the case in Cr₂O₃ doped with 0.12 at.% Sn⁴⁺ [14]. No magnetically split ¹¹⁹Sn components with H < 85 kOe were mentioned in [8], all studied *R*CrO₃ samples having been simultaneously doped with both Sn⁴⁺ (2 at.%) and charge-balance Ca²⁺ (2 at.%) cations. Analysis of the spectrum in Fig. 1b also reveals the presence of a quadrupole doublet (δ = 0.17 mm s⁻¹, Δ = 0.46 mm s⁻¹, H = 0) assignable to SnO₂-like clusters and another doublet (δ = 2.84 mm s⁻¹, Δ = 2.2 mm s⁻¹) whose parameters point, as mentioned above, to reduction of small amount of Sn⁴⁺ to the divalent state during sample preparation. Download English Version:

https://daneshyari.com/en/article/1594740

Download Persian Version:

https://daneshyari.com/article/1594740

Daneshyari.com