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a b s t r a c t

Using the transfer-matrix technique, we have numerically investigated the effect of introducing the
dimer on the nature of the states across Dimer Fibonacci semiconductor superlattices on the miniband
structure of the GaAs/AlxGa1−xAs superlattices. By the introduction of the dimer model, the transmission
spectra reveal the appearance of aminiband structurewith a concomitant disappearance of the singularly
localized states. This behavior is due to the interaction between the states of the dimer wells inside the
potential and, therefore, the system is seen by the particle as two overlapped ordered structures.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Materials with restricted geometry, such as semiconductor
quantum-well structures [1], quantum dots and wires [2,3], or-
ganic thin films [4] as well as quasiperiodic structures [5], are
nowadays subjects of growing interest from both fundamental and
practical points of view. Quasiperiodic systems are of great inter-
est in solid state physics because they are structures intermediate
between periodic and fully disordered ones [6–8]. Theoretical
studies demonstrate that ideal aperiodic SLs should exhibit a
highly-fragmented and fractal-like electronic spectrum [7,9–12].
After the pioneering work, other quasiperiodic structures were ex-
perimentally realized [13]. In particular, there has been an exten-
sive study on the propagation of electrons or other classical waves
in one-dimensional quasiperiodic superlattices or dielectric multi-
layers by EnriqueMacia et al. [14] in which they have presented an
analysis of wave transmission through Fibonacci Dielectric Multi-
layer (FDM) structures.
Most devices work under bias conditions and, consequently, a

complete characterization of the electronic states in quasiperiodic
SLs subject to an applied electric field is needed. This is to be
compared with periodic SLs, where Bloch oscillations have been
predicted and detected in Ga1−xAlxAs [15,16].
In this paper we address the study of the electronic properties

of the FHBSL and DHBSL in the stationary case. For definiteness,
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we consider a quantum well-based SL constituted by two
semiconductor materials GaAs and AlxGa1−xAs [17,18], with the
same well width a and barrier thickness b in the whole sample,
which in turn preserves the periodicity of the lattice along the
growth axis; the unit supercell has the period d = a + b. For
an appropriate understanding of the FHBSL and DFHBSL effect on
the nature of the electronic and transport properties, the physical
picturemay be handled through the investigation of states close to
the bottom of the conduction miniband with k⊥ = 0. As usual, the
nonparabolicity effects can be neglectedwithout loss of generality.
The structure of FHBSL starts from two basic building blocks

A and B. Here A and B contain the two barrier heights of the
potential. A usual method to construct the Fibonacci sequence is
to use an inflation process according to the rule of concatenation:
Sn = Sn−1 ·Sn−2. This sequence comprises Sn−1 elements A and Sn−2
elements B. The initial sequence is S0 = A = V1 and S1 = B = Vf .

2. Model

In this model of the SL, we consider that the height of the barri-
ers takes only two values, namely V1 for the basic block A and Vf for
the basic block B. These two energies are proportional to the two
values of the Al fraction in the AlxGa1−xAs barriers. The sixth se-
quence, for example, of energies is correlated as: ABAABABAABAAB
corresponding to a (V1Vf V1V1Vf V1Vf V1V1Vf V1V1Vf ) form of the po-
tential profile.
In the following treatment, we include the electron effective

masses corresponding to the different regions of the potential:mb1
and mb2 corresponding to barrier heights V1 and Vf , respectively,
andmw to the well.
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Fig. 1. Potential energy profile for (a) applied bias multibarrier system; (b)
Fibonacci Height Barrier superlattice (FHBSL) for Va = 0 V and (c) Dimer Fibonacci
Height Barrier superlattice (DFHBSL) for Va = 0 V.

The one-dimensional time-independent Schrodinger wave
equation is given by:

1
m∗(z)

∂2

∂z2
ψ(z)+

2
h̄2
[E − VSL(z)]ψ(z) = 0 (1)

where z is the growth axis, E the incoming electron energy, ψ(z)
the wave function in the growth direction and m∗ the effective
mass of each monolayer.
The potential energy profile of the applied biasVa is represented

in Fig. 1(a):
The SL potential VSL derives directly from the different energies

of the conduction band-edge of the two semiconductor materials
(GaAs and AlxGa1−xAs) at the interfaces.
The solutions of Eq. (1) in each potential region are given by the

following equations:

Region (1): V (z) = 0 and m∗(z) = ma (2)

ψ1(z) = 1eikz + Re−ikz (3)

where k =
√
2maE
h̄2
.

Region (2): V (z) = V0 −
eVa
L
z and m∗(z) = mb. (4)

If we define the following transformation rule in the barrier:

ρ(z) =
(
2embVa
L h̄2

)1/3 (V0 − E
eVa/L

− z
)
= Z(η − z). (5)

Fig. 2. Transmission coefficient versus the incident electron energy E of the ordered
structure with N = 144 barriers, V1 = 247 meV, V2 = 150 meV and a = b = 15 Å.

The Eq. (1) becomes the Airy equation:

∂2

∂ρ2
ψ2 (ρ)− ρψ2 (ρ) = 0. (6)

The solutions to Airy’s equation in (7) are the well-known linearly
independent Airy functions Ai(ρ) and Bi(ρ).

ψ2(ρ) = C+2 Ai(ρ)+ C
−

2 Bi(ρ). (7)

Region (3):

V (z) = −
eVa
L
(z + b) and m∗(z) = ma. (8)

If we define the following transformation rule in the well:

ρ ′(z) =
(
2emaVa
L h̄2

)1/3 (
−

beVa
L − E
eVa/L

− z

)
= Z ′(η′ − z), (9)

then Eq. (1) becomes,

∂2

∂ρ ′2
ψ3(ρ

′)− ρ ′ψ3(ρ
′) = 0. (10)

The solutions to Airy’s equation in (10) are thewell-known linearly
independent Airy functions Ai(ρ ′) and Bi(ρ ′).

ψ3(ρ) = C+3 Ai(ρ
′)+ C−3 Bi(ρ

′). (11)

For reasons of periodicity, the solutions in the regionswhich follow
are the same ones as those in the region (2) and (3), except that the
amplitude changes.

Region (NR) : V (z) = 0 and m∗(z) = ma (12)

ψNR(z) = 0e−ik
′
z + τeik

′
z (13)

where k′ =
√
2ma(E+eVa)

h̄2
and τ represents the transmission

amplitude.
The first amplitude in the Eq. (13) is null, because the electron

is supposed as coming from the left.
Using the Bastard conditions of continuity [19], one has the

relation between the reflected and transmitted amplitude, R and
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