

Available online at www.sciencedirect.com



solid state communications

Solid State Communications 145 (2008) 255-258

www.elsevier.com/locate/ssc

## Negative pressure effects in SrTiO<sub>3</sub> nanoparticles investigated by Raman spectroscopy

XueWei Wu, DaJian Wu, XiaoJun Liu\*

Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China Key Lab of Modern Acoustics of MOE, Nanjing University, Nanjing 210093, China

Received 7 November 2007; accepted 16 November 2007 by A.H. MacDonald Available online 22 November 2007

## Abstract

The size effects on  $SrTiO_3$  nanoparticles have been investigated by means of Raman spectroscopy with changing the grain size in the range 10–80 nm. The intensities of the first-order polar  $TO_2$  and  $TO_4$  modes increase as the grain size reduces, suggesting the enhanced interaction of the surface-defect dipoles on the grain boundary. By contrast, the intensities for the first-order nonpolar  $TO_3$  mode decrease with reducing the grain size. Further we have found that the Raman frequencies of the vibration modes are very sensitive to the variation of the grain size. The softening of the  $TO_2$  and  $TO_3$  modes with decreasing the grain size indicates the increase of the Ti–O bond length, which is consistent with the lattice expansion investigated by XRD. We have ascribed the size effects to the negative pressure effects due to the enhanced interaction of the surface-defect dipoles.

© 2007 Elsevier Ltd. All rights reserved.

PACS: 78.67.Bf; 68.35.-p; 61.50.Ks

Keywords: A. Nanostructures; C. Crystal structure and symmetry; D. Phonons; E. Inelastic light scattering

Metal-oxide nanoparticles have attracted considerable attention due to their potential for applications in many technologies such as solar energy conversion, batteries and ductile ceramics [1]. Up until now, a large amount of studies concerning the structure and optical properties of these nanoparticles have demonstrated that these metal oxides have unique properties that are largely dependent on the grain size and morphology [2–4]. Recent researches [5] have also shown that the dimensional reduction into the nanoscale regime produces distinct properties in the bulk, which is thought to originate from phonon confinement, surface strain or defect centers.

 $SrTiO_3$  is a perovskite-type quantum paraelectric metal oxide where large quantum fluctuations make the ferroelectric state unstable in favor of the paraelectric state. In the past few years, many investigations of  $SrTiO_3$  have been conducted,

which were focused on size or temperature dependence of phase transitions between the paraelectric and ferroelectric states [6,7], the variations for the optical and dielectric properties [8–11], and the characteristics for the surface layer and morphology [12,13]. It has been found that SrTiO<sub>3</sub> particles exhibit distinct properties from the bulk with the reduction of grain size into the nanoscale regime [9,14]. For example, the photoluminescence (PL) intensity [15] was observed to increase in SrTiO<sub>3</sub> nanoparticles, which was ascribed to the formation of the intrinsic surface states and defect centers in the nanoparticles. In addition, the critical temperature  $T_c$  related to quantum fluctuation was detected to increase in nanoparticles [11], implying the enhanced exchange interactions of dipoles in the SrTiO<sub>3</sub> nanoparticles. Recently, Wu et al. [4] have found the lattice expansion as the grain size of SrTiO<sub>3</sub> is reduced to the nanoscale by means of XRD spectroscopy, and attributed the lattice expansion to the negative pressure effects due to the enhanced interaction of the surface-defect dipoles.

In this work, we have employed Raman spectroscopy to investigate the size effects of SrTiO<sub>3</sub> nanoparticles in the size

<sup>\*</sup>Corresponding author at: Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China. Tel.: +86 25 83593617; fax: +86 25 83315557.

E-mail address: liuxiaojun@nju.edu.cn (X. Liu).

<sup>0038-1098/\$ -</sup> see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ssc.2007.11.018

range 10–80 nm. Raman spectroscopy is one of the most sensitive probes to detect the variation of local symmetry for the surface structure. We have found that the Raman spectra of SrTiO<sub>3</sub> particles present a significant variation as the particle size reduces to nanoscale. The intensities of the first-order polar TO<sub>2</sub> and TO<sub>4</sub> modes exhibit significant increase with reducing the particle size from 80 to 10 nm. Further we have observed the decrease of the Raman frequencies of the firstorder TO<sub>2</sub> and TO<sub>3</sub> modes with reducing the particle size. We have ascribed the size effects to the negative pressure effects in SrTiO<sub>3</sub> nanoparticles.

Nanocrystalline SrTiO<sub>3</sub> particles were prepared using the sol-gel method [11]. A stoichiometric mixture of Ti(I-OC<sub>3</sub>H<sub>7</sub>)<sub>4</sub> and Sr(OCH<sub>3</sub>OC<sub>2</sub>H<sub>4</sub>)<sub>2</sub> diluted with 2-methoxyethanol was refluxed for 24 h. After gelation, the samples were heat treated for 3 h at different temperatures, i.e., 600, 700, 800 and 900 °C. The crystal structures were analyzed by a Rigaku D/max 2500 diffractometer with Cu K $\alpha$  radiation and a graphite monochromator. A step scan mode was employed with a step width of  $2\theta = 0.02^{\circ}$  and a sampling time of 1 s. Fig. 1 shows the X-ray diffraction (XRD) powder patterns for SrTiO<sub>3</sub> nanoparticles treated at 900 °C (upper panel) and 600 °C (bottom panel). The XRD patterns indicate the cubic structure with well-crystallized character of the SrTiO<sub>3</sub> nanoparticles. The average sizes were determined from the full-width at half-maximum (FWHM) of the most intense (110) peak using Scherrer's equation, i.e.,  $D = 0.9\lambda/B\cos(\theta)$  [16], where D is the average grain size,  $\lambda$  is the X-ray wavelength, B is the FWHM of (110) peak and  $\theta$  is the diffraction angle. The corresponding average sizes of the nanoparticles were obtained as 10, 40, 70, 80 nm, respectively, which are in agreement with the TEM results. The lattice parameters for the samples were calculated by using the least-squares procedure. The inset in Fig. 1 shows the diffraction (110) peak at 80 nm (solid circles) and 10 nm (open circles), in which the diffraction angle shifts from  $2\theta = 32.4^{\circ}$  at 80 nm to  $2\theta = 32.3^{\circ}$  at 10 nm, indicating the increase of lattice parameters. Fig. 2 shows that the lattice parameter a increases from 3.907 Å at 80 nm to 3.922 Å at 10 nm. In Raman experiments, the samples were excited at 514.5 nm (2.41 eV) with an argon laser in a backward configuration. To avoid the sample damage, the laser power density was kept below 40 W/cm<sup>2</sup>. The scattered light was detected with a double monochromator (JobinYvon-U1000) equipped with a photon-counting system.

Before describing the details of the size effects on Raman spectra, let us survey the Raman active modes of SrTiO<sub>3</sub>. At room temperature, SrTiO<sub>3</sub> has an ideal cubic perovskite structure with space group Pm3m (O<sup>1</sup><sub>h</sub>), and the vibration modes are  $3F_{1u} + F_{2u}$  [17]. Neither  $F_{2u}$  nor  $F_{1u}$  modes are Raman active, and then no first-order Raman mode is expected in SrTiO<sub>3</sub> at room temperature. The first-order modes are symmetrically forbidden in bulk SrTiO<sub>3</sub> due to the phonon momentum selection rule for  $q_0 = 0$  near the center of the Brillouin zone (BZ), while the second-order modes [18]. Recently, extensive studies on the Raman spectra of SrTiO<sub>3</sub> have shown that the Raman modes can be modified, especially the activation



Fig. 1. X-ray diffraction (XRD) powder patterns for the SrTiO<sub>3</sub> nanoparticles treated at 900 °C (upper panel) and 600 °C (bottom panel). The inset shows the diffraction (110) peak at 80 nm (solid circles) and 10 nm (open circles). The solid curves are the best-fitted results with the Lorentzian functions.



Fig. 2. Size dependence of the lattice parameter a for SrTiO<sub>3</sub> nanocrystals at 300 K.

of the first-order Raman modes, by many factors like strain effects, oxygen vacancies and even external conditions [19–21]. Du et al. [19] observed the first-order modes in polycrystalline SrTiO<sub>3</sub> even at 300 K, which was ascribed to the strain effect and oxygen vacancies. In addition, presence of impurities such as Ca doping or applied external electric field was found to break the central symmetry of SrTiO<sub>3</sub> and hence the appearance of the first-order modes in bulk SrTiO<sub>3</sub> [20,21]. With decreasing temperature to 76 K, a cubic to tetragonal ( $C_{4\nu}^1$ or P4mm) structural change takes place in bulk SrTiO<sub>3</sub>, and each of the  $F_{1u}$  modes splits into a doubly degenerate E mode and a nondegenerate  $A_1$  mode, while the  $F_{2u}$  mode splits into *E* and  $B_1$  modes. Thus, the vibration modes are  $3(A_1 + E) +$  $E + B_1$ . All the  $A_1$  and E modes are both Raman and infrared active, while the  $B_1$  mode is Raman active. The presence of long-range electrostatic forces further splits each of the  $A_1$ and E modes into transverse optical (TO) and longitudinal optical (LO) modes [17]. Nilsen et al. [18] investigated the Raman spectra of bulk SrTiO<sub>3</sub> in the range 100–1000  $cm^{-1}$ 

Download English Version:

https://daneshyari.com/en/article/1594996

Download Persian Version:

https://daneshyari.com/article/1594996

Daneshyari.com