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a b s t r a c t

We performed a further investigation on the Maxwell–Wagner (MW) relaxation-induced relaxor-like
dielectric response characterized by a broad peak in the real part of the dielectric permittivity as a
function of temperature. Based on the double-layerMWmodel formulated by Catalan et al. (2000) [10], an
empirical formula was derived to describe the temperature dependence of the peak intensity. It was also
found that the temperature dependence of the peak position can be characterized by an Arrhenius-like
relation. The differences between the true relaxor andMW-related relaxor behaviours are also discussed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Relaxor ferroelectrics (relaxors) are of significant technological
and scientific interest. They are characterized by a diffuse phase
transition and a strong frequency dispersion, i.e., there is a broad
peak in the real part of the dielectric permittivity (ε′) as a func-
tion of temperature, with the peak decreasing in magnitude and
shifting to higher temperature with increasing measurement fre-
quency; and the low-temperature side of the peak shows strong
frequency dispersion, whereas the high-temperature side exhibits
frequency independence [1]. These features are generally regarded
as fingerprints of relaxor ferroelectrics. This assumption is made
despite the indications that a relaxor-like dielectric anomaly un-
related to ferroelectric polarization can be achieved in a variety of
systems, including single-crystallinematerials, thin films, ceramics
and composite materials. The diffuse dielectric anomaly is a very
common phenomenon in the temperature range 400–900 ◦C in ti-
tanate perovskites [2–7]. In CaCu3Ti4O12, the anomaly was even
observed at as low as around 340 K [8]. On the other hand, in
the temperature range below room temperature, relaxor-like di-
electric behaviour was reported in many systems [9–18]. Up to
now, various mechanisms have been put forward to account for
the underlying physics of the relaxor-like dielectric anomaly. These
mechanisms can be classified into two types. One is the dipole
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model, associated with different mobile defects based on the uni-
versal feature that the anomaly is very sensitive to oxygen vacan-
cies, especially for the titanate perovskites [4–6,8,19]. The other
is the MWmodel, associated with the electrical inhomogeneity in
the tested sample [2,3,9,10]. Based on the typical double-layerMW
model (see the inset of Fig. 1) containing two RC (R = resistance
and C = capacitor) circuits in series, Catalan et al. showed that
a relaxor-like dielectric behaviour can be fully replicated by sim-
ply assuming that the intrinsic permittivities were temperature
independent and only the resistivities changed [10]. However, an
MW-type relaxation is widely evidenced to exhibit a Debye-like
dielectric behaviour, namely, the dielectric constant (ε′) exhibits a
characteristic frequency dispersion kink accompanied by a peak in
the corresponding dielectric loss (ε′′). For example, the MWmech-
anism is believed to be the origin of the giant dielectric constants
that show a steplike decrease from a higher temperature plateau
to a lower temperature plateau found in CaCu3Ti4O12 in recent
years [20,21]. Since the Debye-like behaviour is quite alien to the
relaxor-like behaviour, this raises a pertinent question of how the
MWmodel can account for bothdifferent behaviours? Besides, sev-
eral important facts about the relaxor-like behaviour caused by
MW relaxation still remain unclear: (i) What are the main features
of the relaxor-like behaviour? (ii) How canwe distinguish between
the relaxor-like behaviour and the real relaxor behaviour?
In this communication we present a further investigation of the

MWmodel with the aim of providing some insights into the above
questions. Since the relaxor-like behaviour displays a temperature-
dependent anomaly, we therefore restrict our following discussion
to the temperature domain.
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Fig. 1. The temperature dependence of εS calculated with the parameters σ10 =
3.0 × 10−11 S cm−1 , E1 = 0.98 eV, ε1 = 5.6 for the grain boundary, σ20 =
1.0 × 10−5 S cm−1 , E2 = 0.59 eV, ε2 = 20 for the grain, and d1/d2 = 1/9. The
inset shows the double-layer model for MW relaxation.

2. Results and discussion

The real (dielectric constant, ε′) and imaginary (dielectric loss,
ε′′) parts of the complex permittivity of the double-layer system
can be characterized by the conductivities σi (i = 1, 2) (or resistiv-
ities ρi), permittivities εi (unit-free), and thicknesses di [9,22],

ε′(T ) = ε∞ + (εS − ε∞)/[1+ (ωτ)2] (1)

ε′′(T ) = dσ1σ2/[ωε0(d1σ2 + d2σ1)]
+ (εS − ε∞)ωτ/[1+ (ωτ)2] (2)

with

εS = ε
′(ω = 0) = d(d1ε1/σ 21 + d2ε2/σ

2
2 )/(d1/σ1 + d2/σ2)

2 (3)

ε∞ = ε
′(ω→∞) = d/(d1/ε1 + d2/ε2) (4)

τ = (ε1d2 + ε2d1)/(σ1d2 + σ2d1) (5)
where d = d1 + d2, T is the absolute temperature, and ω and ε0
are the angular frequency and the permittivity of free space, re-
spectively. Except for an additional term (the first term in Eq. (2))
that forms an exponential increasing background with increasing
temperature in ε′′(T ), the MW relaxation follows similar relax-
ation equations to those of the Debye relaxation. This is the rea-
son why the MW relaxation is always found to exhibit Debye-like
behaviour. In order to describe the relaxor-like anomaly, detailed
information about the temperature dependences of σi and εi is
required. Following the assumptions made by Catalan et al. [10],
the conductivity obeys the thermally activated law, i.e., σi =
σi0 exp(−Ei/kBT ) (i = 1, 2), while εi (i = 1, 2) is relatively tem-
perature independent. Under these assumptions, ε∞ = constant;
hence, theMW relaxation properties are completely dominated by
εS and τ . As seen from Eq. (5), τ varies with temperature following
a quasi-exponential relation; it increases steeply at low tempera-
tures. In terms of dεS/dT = 0, it is easy to clarify that εS , as shown
in Fig. 1, shows a minimum at the critical temperature (TC ), where
ε1ρ1 = ε2ρ2. In this case, εS = ε∞; this means that the relaxation
term in Eqs. (1) and (2) equals zero and the MW relaxation disap-
pears. At temperatures lower than TC , two cases should be consid-
ered: ε1ρ1 > ρ2ε2 and ε1ρ1 < ρ2ε2. The first case implies that
E1 > E2, and the resistivity of the grain boundary will be greater
than the resistivity of the grain at low enough temperatures; thus,
εS can be written as [22]
εS = A1/[B1 + C1 exp(−E/kBT )] (6)
where A1 = (d1/d)ε1, B1 = (d1/d)2, C1 = 2d2d1σ10/d2σ20, and
E = E1− E2. The low-temperature branch saturates at low enough
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Fig. 2. Debye-like (left) and relaxor-like (right) dielectric behaviours predicated
by MW relaxation. (a) and (d): The temperature dependence of εS and 1+ (ωτ)2 at
three frequencies with ω1 < ω2 < ω3 . (b) and (e): The temperature dependence of
ε′ . (c) and (f): The temperature dependence of ε′′ without background. The dotted
lines in the left and right panels indicate, respectively, the temperature θI and θII
where the 1+ (ω1τ)2 curve intersects the εS curve.

temperatures with a value of εSL = ε1(d/d1). Meanwhile, at tem-
peratures higher than TC , εs can be written as

εS = A2/[B2 + C2 exp(E/kBT )] (7)

where A2 = (d2/d)ε2, B2 = (d2/d)2, C2 = 2d2d1σ20/d2σ10. The
high-temperature branch achieves a saturation value of εSH =
ε2(d/d2). The low- and high-temperature saturation values define
ε∞ by the relation 1/ε∞ = 1/εSL + 1/εSH .
The second case (ε1ρ1 < ρ2ε2) simply causes the exchange

of εSL and εSH . It has no effect on the discussion and the final
conclusions; we therefore do not consider this case. This is also
because: (1) in most practical cases, the grain boundary resistivity
is much larger than that of the grain; and (2) the well-known
effective permittivity of non-uniformmaterials, εeff ∼ ε1(d/d1), is
simply the low-temperature saturation value εSL. This implies that
the grain boundary actually plays a decisive role in the dielectric
properties.
The dielectric constant ε′(T ) depends on the ratio of (εS −

ε∞)/(1 + (ωτ)2) ∼ εS/(1 + (ωτ)2), which can be qualitatively
described by a graphic method, as illustrated in Fig. 2. According
to the position where the 1+ (ωτ)2 curve intersects the εS curve,
three dielectric regions can be classified (I, II, and III, as indicated
by the vertical lines in Fig. 1. εS is almost temperature independent
in region I and decreases drastically in region II, while in region III
εS increaseswith temperature following Eq. (7).We therefore have
three dielectric behaviours:
(1) If the 1+(ωτ)2 curve intersects εS in region I [Fig. 2(a)] at the

temperature θI , ε′(T ) tends to εS , showing a higher temperature
plateau at temperatures higher than θI due to εS � 1 + (ωτ)2,
whereas at temperatures lower than θI , ε′(T ) tends to ε∞, giving
a lower temperature plateau due to εS � 1 + (ωτ)2 [Fig. 2(b)].
At θI , one has εS = 1 + (ωτ)2, i.e., ωτ =

√
εS − 1; thus

ωτ = 1 will be achieved at a temperature somewhat higher
than θI . In this case,ε′′(T ), as seen from Eq. (2), will show a
relaxation peak [Fig. 2(c)]. This dielectric behaviour is the well-
known Debye-like behaviour; therefore, region I is termed a
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