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a b s t r a c t

We extend the bond-operator mean-field theory to study the rung singlet phase and its phase boundary,
the triplet excitation, and the spin gap of the spin–orbital models with four-spin exchanges. The theory
gives a well description of the rung singlet phase and phase boundaries in two-dimensional (2D) and
three-dimensional (3D) cases are predicted. It is shown that consideration of the ring exchange suppresses
the excitation spectrum and decreases the spin gap. For 2D and 3D spin–orbital models, positive ring and
leg coupling tend to collaborate with each other to break the rung singlet phase. On the boundary line
Jleg = Jring < Jrung/4, the rung singlet density is one and a second-order phase transition occurs.

Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The multiple-spin exchange interactions have drawn steady
research interest from both theoretical and experimental points of
view over the years [1–4]. These four-spin exchange terms, such
as (Si · Sj)(Sk · Sl), are usually derived from fourth-order pertur-
bation in the strong coupling limit (small t/U) of the Hubbard
model and can inducemany exotic ground states [4]. Themost im-
portant mechanism is the so-called ring exchange [1–3], which is
introduced first to describe the magnetic properties of solid 3He.
Recently it was suggested that inclusion of a small ring exchange
can induce obvious effect on some strongly correlated systems
like spin ladders and the high-Tc cuprates [1,5,6]. Among low-
dimensional spin systems, two-leg antiferromagnetic spin-ladder
systems provide an important playground for studying the effect
of ring exchange terms. The motivation to study the effect of ring
exchange is that the magnon dispersion at the zone boundary
obtained by inelastic neutron scattering experiments cannot be
described within a nearest-neighbor Heisenberg model. It is also
found that the inclusion of a cyclic spin exchange term of about
20% can reproduce the dispersion [5].
The Hamiltonian of the spin–orbital chain (also called spin lad-

der) with extended four-spin exchange interactions (as Fig. 1(a)) is
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usually defined as

H = Jrung
∑
i

S1,iS2,i + Jleg
∑
i

(S1,iS1,i+1 + S2,iS2,i+1)

+
Jring
2

∑
〈ijkl〉

(Pijkl + P−1ijkl ), (1)

where Jrung and Jleg denote the rung and leg coupling constants, the
index i refers to the rungs, and 1, 2 label the two legs. The cyclic
permutation operator Pijkl for four spins on a plaquette is given by

Pijkl + P−1ijkl = 4(SiSj)(SkSl)+ 4(SiSl)(SjSk)− 4(SiSk)(SjSl)

+ SiSj + SkSl + SiSl + SjSk + SiSk + SjSl. (2)

In Fig. 1(b), (c), the extended coupled spin-ladder models are
also illustrated in two-dimensional (2D) and three-dimensional
(3D) cases. Consideration of the four-spin ring exchange has been
widely studied [5–15] in recent years,which can induce the gapped
staggered dimer phase, scalar chiral phase, rung singlet phase
and other exotic phases. Especially the scalar chiral phase can be
realized by ring exchange [2,7], which is considered to be difficult
to realize in SU(2)-symmetric systems in the past. In most cases
we understand the ground state of model (1) with the help of
numerical techniques, such as the density–matrix renormalization
group (DMRG) [7,8,12], numerical exact diagonalization of small
clusters [11,14]. Analytical investigations of the influence of this
exchange have employed perturbative approaches [9], spin-wave
analysis [13], exact diagonalization in combinationwith conformal
field theory [5].
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Fig. 1. Schematic structure of spin–orbital models with additional ring exchange
of (a) one dimension, (b) two dimension, and (c) three dimension.

The bond-operatormean-field approach [16,17] is an important
method to discuss the disordered and frustrated spin systems
and superior than SU(2) mean-field approximation in many cases,
which is proposed firstly by Sachdev [16]. Its basic idea is to
introduce a set of bond operators to create and annihilate singlet
and triplet bonds between a pair of spins. The effect of the local
hardcore constraint is handled by Brueckner approximation as
introduced by Kotov et al. [18]. Until now, this method has been
applied widely and successfully to many spin systems, such as
spin-ladder system [17,19], the bilayer model [18,20], J1 − J2
model [21], and so on. For the spin-ladder system, bond-operator
approach reproduces the dispersion and the spin gap in the rung
singlet phase [17], which ensures us to extend the discussion with
taking the ring exchange into account.
In the present paper, we use the bond-operator formalism to

study the spin–orbital model with a four-spin ring exchange. The
starting point is the dimer limit of uncoupled rungs. In Section 2we
give the theoretical framework and the self-consistent equations
for the present model. In Section 3 we study the effect of the four-
spin ring exchange on the elementary excitations, the energy gap
and other physical quantities. The limitation of the present mean-
field approach is discussed. We also present the exactly soluble
condition for generalized spin-ladder system with rung singlet
ground state, while a similar result is also proposed by variational
ansatz. Finally, Section 4 gives the summary.

2. Theoretical framework

For a pair of spins, four operators sĎ, tĎx , t
Ď
y , t

Ď
z are introduced to

create the four states in Hilbert space. A representation of the spins
between two ladders in terms of these singlet and triplet operators
is given by Sα1 =

1
2 (s

Ďtα + tĎαs− iεαβγ t
Ď
β tγ ), S

α
2 =

1
2 (−s

Ďtα − tĎαs−
iεαβγ t

Ď
β tγ ), where α, β , and γ represent components along the x,

y, and z axes, respectively, and ε is the antisymmetric Levi-Civita
tensor. The s and tα operators satisfy the bosonic commutation
relations with a local constraint sĎs + tĎαtα = 1. Substituting the
operator representation into the original Hamiltonian (1), we get

H = H0 + H1 + H2,

H0 =
∑
i

[
Jrung
4
+
3
8
Jring − (Jrung + 2Jring)s

Ď
i si

]
−

∑
i

µi(s
Ď
i si + t

Ď
i,αti,α − 1),

H1 =
Jleg + Jring
2

∑
i,α

(
sĎi si+1ti,αt

Ď
i+1,α + h.c.

)
+
Jleg − Jring
2

∑
i,α

(
sĎi s

Ď
i+1ti,αti+1,α + h.c.

)
,

H2 =
Jleg + Jring
4

∑
i,α,β

(1− δα,β)

×

(
tĎi,αt

Ď
i+1,β ti+1,αti,β − t

Ď
i,αt

Ď
i+1,αti+1,β ti,β + h.c.

)
+ 2Jring

∑
i

sĎi sis
Ď
i+1si+1, (3)

where a site-dependent chemical potentialµi has been introduced
to impose the local constraint. For a relatively large Jrung , we
take 〈si〉 = s̄, which means that s bosons are condensed. It can
be seen that the consideration of Jring renormalizes the coupling
parameters of the individual terms in the original Heisenberg
Hamiltonian. We also define two mean fields P and Q as P =
〈tĎi,αti+1,α〉, Q = 〈t

Ď
i,αt

Ď
i+1,α〉 to decouple the Hamiltonian. Then the

Hamiltonian can be solved by a mean-field approach.
Defining a generalized Nambu spinor Ψ Ď

k = (tĎk,1, t
Ď
k,2, t

Ď
k,3,

t−k,1, t−k,2, tk,3) and after Fourier transformation, the decoupled
Hamiltonian can be written in a compact form:

H =
1
2

∑
k

Ψ
Ď
k HααΨk + N[−(Jrung + 2Jring)s̄

2
+ 2Jring s̄4

+

(
5
2
− s̄2

)
µ− 3(Jleg + Jring)(P2 − Q 2)], (4)

where Hαα = ΛkΩ1 + ∆kΩ2 with Ω1 = σx ⊗ σ0, Ω2 = σ ′0 ⊗ σ0,
σx is the Pauli matrix, σ ′0 is the 2 × 2 unit matrix and σ0 is the
3 × 3 unit matrix, Λk = −µ + (Jleg + Jring)(s̄2 + 2P) cos k, ∆k =
(Jleg − Jring)s̄2 cos k−2(Jleg + Jring)Q cos k. HereΩ1(2) are expressed
in the form of direct product of σx(0′) and σ0. The corresponding
Matsubara Green’s function (GF) is thus deduced to G−1(k, iωn) =
iωnσz ⊗ I −Hmf (k), where ωn is the bosonic Matsubara frequency.
The poles of the GF matrix give rise to the quasiparticle spectra:

ε(k) =
√
Λ2k −∆

2
k . From the free energy of the system, the saddle-

point equations at T = 0 K are derived as

3
2

∫ π

−π

dk
2π

1√
1− Γ 2k

=
5
2
− s̄2,

1
2

∫ π

−π

dk
2π

cos k√
1− Γ 2k

= P,

1
2

∫ π

−π

dk
2π
−Γk cos k√
1− Γ 2k

= Q ,

3Jleg(P + Q )+ 3Jring(P − Q ) = µ+ Jrung + 2Jring(1− 2s̄2), (5)

where Γk = ∆k/Λk. For the 2D and 3D cases, one can obtain the
self-consistent equations directly by replacing cos kwith (cos kx+
cos ky)/2 and (cos kx+ cos ky+ cos kz)/3 in the dispersion relation
in Eq. (5). For a given value of Jleg/Jrung and Jring/Jrung , we have a set
of solutions forµ, s̄2, P and Q . It has be shown in numerous former
studies that most rungs occupy the singlet state for a relatively
large Jrung and so the effect of P and Q are small [17,19].
The bond-operator mean-field theory has been applied suc-

cessfully to the spin-ladder system without taking the ring ex-
change into account [19]. In 2D case, the model reduces to the
well-known bilayer spin model for Jring = 0. It is shown that the
zero-temperature quantum phase transition occurs at a critical ra-
tio of Jleg/Jrung ≈ 0.86.Without taken the four-spin exchange terms
into account, the 2D model considered here is also called net spin
model, where a set of exactly soluble net spinmodels for any spin S
have been presented [22]. In the following discussion, Jrung is taken
as the energy unit. For small Jleg and Jring , the spectrum is real and
positive everywhere in the Brillouin zone. From the expression of
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