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a b s t r a c t

Two one-dimensional spin-1 antiferromagnetic Isingmodels with a single-ion anisotropy under external
magnetic field at low temperatures are exactly investigated by the transfer-matrix technique. The
magnetization per spin (m) is obtained for the two types of models (denoted by model 1 and 2) as an
explicit function of the magnetic field (H) and of the anisotropy parameter (D). Model 1 is an extension
of the one recently treated by Ohanyan and Ananikian [V.R. Ohanyan, N.S. Ananikian, Phys. Lett. A 307
(2003) 76]: we have generalized their model to the spin-1 case and a single-ion anisotropy term have
been included. In the limit of positive (or null) anisotropy (D ≥ 0) and strong antiferromagnetic coupling
(α = JA/JF ≥ 3) the m × H curves are qualitatively the same as for the spin S = 1/2 case, with the
presence of only one plateau at m/msat = 1/3. On the other hand, for negative anisotropy (D < 0) we
observe more plateaux (m = 1/6 and 2/3), which depend on the values of D and α. The second model
(model 2) is the same as the one recently studied by Chen et al. [X.Y. Chen, Q. Jiang,W.Z. Shen, C.G. Zhang,
J. Mag. Mag. Mat. 262 (2003) 258] using Monte Carlo simulation; here, the model is treated within an
exact transfer-matrix framework.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

For some one-dimensional (1D) antiferromagnets at low tem-
peratures, a spin gap has been observed, which is induced by
a finite magnetic field. Also a plateaux structure appears in
the magnetization process. Experimentally, the magnetization
plateaux were observed in high-field measurements of several
magnetic materials such as the quasi one-dimensional com-
pounds SrCu2O3 [1], Y2BaNiO5 [2], Ni(C2H8N2)2NO2ClO4 (ab-
breviated NENP) [3,4], and Cu(NO3)22.5H2O [5], the triangular
antiferromagnets C6Eu [6], CsCuCl3 [7] and RbFe(MoO4)2 [8], and
the quasi two-dimensional compound, with a Shastry–Sutherland
lattice structure, SrCu2(BO3)2 [9]. The mechanism for the appear-
ance of these magnetization plateaux in quasi one-dimensional
spin chains are dimerization, frustration, single-ion anisotropy, pe-
riodic field and so on.

From a general view point, Oshikawa et al. [10] concluded that
the necessary condition for the magnetization plateaux in spin-S
chains is Q (S − m) = integer, where Q is the spatial periodicity
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of the magnetic ground state and m is the magnetization per site.
For some range of the magnetic field H (i.e. H1 < H < H2), the
system ceases responding to its increase and a plateau is formed in
themagnetization versus themagnetic field curve. The values ofm
at which the plateaux appear are sensitive to small changes in the
parameters of themodel and are not only restricted to integer spin
(Haldane conjecture [11]).

In the S = 1/2 antiferromagnetic Heisenberg model on a
triangular lattice, a magnetization plateau was found at m/msat =

1/3 [6–8,12]. In an S = 1/2 trimerized Heisenberg model [13], the
plateau appears at m/msat = 1/6. Recently, plateaux at m/msat =

1/8 and 1/4 have been observed in the SrCu2(BO3)2 [9], which has
a Shastry–Sutherland lattice structure. However, irrational values
have not been found, at least so far. Theoretically, various other
models with spin S = 1/2 have been proposed to describe the
magnetization plateaux. One of the first models was introduced
by Hida [14], where a Heisenberg chain was considered, with
antiferromagnetically coupled ferromagnetic trimers (p = 3). The
three-dimerized Hamiltonian proposed by Hida to describe the
3CuCl2.2 dioxane compound is given by

H = H trim
+ H int

+ HZeeman, (1)
with

H trim
= −JF

∑
i

(Si · τ i + τ i · σ i) , (2)
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H int
= JA

∑
i

σ i · Si+1, (3)

and

HZeeman
= −µBH

∑
i

(
Szi + σ z

i + τ z
i

)
, (4)

where JA and JF are the antiferromagnetic and ferromagnetic
interactions, respectively, Si, τ i and σ i are the S = 1/2 spin
operators at site i, µB is the Bohr magneton and H is the
magnetic field. Using exact diagonalization of finite systems, Hida
obtained, for JF comparable to or smaller than JA, a plateau at
m/msat = 1/3. The plateau mechanism was considered to be a
purely quantum phenomenon, where the concepts of magnetic
quasiparticles and strong quantum fluctuations are regarded to be
of major importance for understanding the process. On the other
hand, Ohanyan and Ananikian [15] have recently studied the Hida
model by using the transfer-matrix technique, replacing the spin
operators (Si, τ i andσ i) by Ising variables (Szi , σ

z
i , τ z

i ). It was shown
that, for this classical model and for T = 0 (ground state) and
JA ≥ 3JF (strong antiferromagnetic coupling), a magnetization
curvewith plateau atm/msat = 1/3 is observed, indicating that the
appearance of plateaux is not a quantummanifestation, butmay be
caused by the stability of spatially modulated spin structures.

Another model which presents magnetization plateaux is
the one-dimensional spin-1 antiferromagnetic Heisenberg with
single-ion anisotropy [16]. Thismodel is described by the following
Hamiltonian:

H = J
∑

i

Si · Si+1 − µBH
∑

i

Szi + D
∑

i

(
Szi

)2
, (5)

where D is the single-ion anisotropy. For D = 0, the ground
state is a singlet and the lowest excitation is a triplet (Haldane
conjecture [11]); increasing D, the triplet splits into a higher-
energy singlet and a lower-lying doublet, with the Haldane gap
for D = 0, ∆(0), splitting into two gaps, as observed in neutron
scattering of NENP [17]. The Haldane gap for general D, ∆(D),
presents two different behaviors: for D > Dc = J , it increases with
D, while for D < Dc ∆(D) decreases as D increases.

Recently, spin S ≥ 1 Ising antiferromagnetic chains with
single-ion anisotropy have been studied by using classical Monte
Carlo simulation [18] where the presence of 2S + 1 plateaux
for D > 0 was observed. Essentially, these classical models are
obtained by replacing the spin operators (Si) by Ising variables (Szi )
in Hamiltonian (5). From a theoretical point of view, the model
studied by Chen, et al. [18] represents the 1D antiferromagnetic
Blume–Capel model [19]; two different critical behaviors were
observed, which depend on the anisotropy parameter D (D < Dc
and D > Dc , where Dc = J).

The purpose of this work is to obtain exact results for
two classical models with spin S = 1 and in the presence
of a single-ion anisotropy. In Section 2 the 1D models are
presented and exactly solved by the transfer-matrix technique.
The magnetization plateaux and ground-state phase diagrams
are discussed in Section 3. Finally, the last section is devoted to
conclusions.

2. Models and formalism

The transfer-matrix technique was proposed years ago by
Kramers andWannier [20,21], and it formed the basis for Onsager’s
solution [22] of the two-dimensional Ising model. In this section,
we use this technique to obtain exact results for two one-
dimensionalmodels, in order to analyze themagnetization plateau
mechanism.

2.1. Model 1: Three-dimerized chain

The first model we study is described by the following
Hamiltonian (see Fig. 1):

H1 = −JF
∑

i

(
Szi · τ z

i + σ z
i · τ z

i − ασ z
i · Szi+1

)
− µBH

∑
i

(
Szi + τ z

i + σ z
i

)
−D

∑
i

[(
Szi

)2
+

(
τ z
i

)2
+

(
σ z
i

)2]
, (6)

where α = JA/JF and the spin variables Szi , τ
z
i and σ z

i can
assume the values −1, 0, 1. The above Hamiltonian represents a
nonuniformspin system inwhich ferromagnetic trimers composed
of S = 1 spins (Szi , τ

z
i and σ z

i ) are coupled antiferromagnetically
in one dimension, in the presence of a magnetic field (H)
and single-ion anisotropy (D). In the limit α → 0 (strong
intratrimer ferromagnetic interaction), the variables Szi , τ

z
i and σ z

i
form a single spin ξi with magnitude 3. Thus, the system can be
approximated by a spin S = 3 antiferromagnetic Blume–Capel
chain.

The transfer-matrix technique is based on the calculation of
the eigenvalues {λi}, determined from the solution of the secular
equation

det(W1 − λI) = 0, (7)

where I is the 3 × 3 identity matrix and W1 the Wannier matrix,
with the elements defined by

W1(S, S ′) =

∑
σ ,τ=0,±1

exp[a(τ )S + dS2 + b(σ )S ′
+ c(τ , σ )], (8)

with

a(τ ) = βJFτ + βµBH, (9)

b(σ ) = −αβJFσ , (10)

c(τ , σ ) = βJFστ + βµBH(τ + σ) + βD(τ 2
+ σ 2), (11)

and

d = βD, (12)

where S, S ′
= 0, ±1.

Using properties of the matrix trace, the partition function
Z = Tr(WN) can be written as a sum of the Nth power of the
eigenvalues {λi} obtained from Eq. (7), i.e.,

Z =

3∑
i=1

λN
i . (13)

In the thermodynamic limit (N → ∞), the free energy,
magnetization, magnetic susceptibility and specific heat (per
atom) are expressed in terms of maximum eigenvalue λmax,
respectively, as

f =
−T
3

ln λmax, (14)

m =
T

3λmax

∂λmax

∂H
, (15)

χ =
∂m
∂H

=
T
3

∂

∂H

(
1

λmax

∂λmax

∂H

)
, (16)

and

c =
2T

3λmax

∂λmax

∂T
+

T 2

3
∂

∂T

(
1

λmax

∂λmax

∂T

)
, (17)
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