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Preparation of cluster states with superconducting qubit network
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Abstract

Based on the architecture of a superconducting charge qubit in [J. Lantz, M. Wallquist, V.S. Shumeiko, G. Wendin, Phys. Rev. B 70 (2004)
140507(R); M. Wallquist, J. Lantz, V.S. Shumeiko, G. Wendin, New J. Phys. 7 (2005) 178], we propose an improved architecture, which can
provide a long-range interaction instead of the controllable nearest-neighbor coupling. It can provide two-qubit operation between arbitrary pairs
of qubits, which is necessary for the realization of the functional and scalable quantum computing. We further investigate a scheme for generating
multi-qubit cluster states which meets the expectations of the so-called one-way quantum computation schemes. It is a simple, scalable and
feasible scheme for the generation of cluster states based on the current experiments about the controlled superconducting charge qubit network.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, much attention has been paid to the physical
realization of a quantum computer, which works on the
fundamental quantum mechanical principle. The quantum
computer can solve certain hard problems exponentially faster
than its classical counterpart. By using unitary quantum logic
network, a conventional quantum computer (QC) may be
implemented. For realizing quantum computing, some physical
systems, such as nuclear magnetic resonance [2], cavity
quantum electrodynamics (QED) [3], and optical systems [4],
have been proposed. These systems have been demonstrated
to possess the advantage of high quantum coherence, but they
cannot be integrated easily to form large-scale circuits.

On the other hand, Raussendorf and Briegel recently
proposed an intriguing alternative QC strategy, i.e., the one-way
quantum computer (QCC ) [5], which constructs quantum logic
network by using only single-qubit projective measurements on
a generated cluster state [6]. In the QCC , quantum information
is encoded in the cluster state, processed, and read out from the
cluster state. The QCC is universal in the sense that arbitrary
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unitary quantum logic networks can be carried out based on a
suitable generated cluster state. Cluster states thereby serve as
a universal source for QCC . Meanwhile, the cluster states can
also be served as entanglement resources [6], which means that
other entanglement states can be constructed from the cluster
states. As mentioned above, the cluster states have the special
characteristics and practical applications, so the preparations
of the cluster states have been implemented by many physical
systems [7–10].

With the progress of high-precise fabricating technique,
superconducting qubits have shown their competence in
quantum computing [11,12]. Josephson charge qubit [13–15]
and flux qubit [16,17] are based on the macroscopic quantum
effects in superconducting circuits. The decoherence time of
superconducting qubits is not very long, but the number of
quantum operations that can be completed during the coherence
time is also comparable with other systems [18]. Owing to its
property of large-scale integration [19,20], the superconducting
qubits are the promising candidates for scalable quantum
computing. In this paper, we propose an alternative and
improved scheme for the universal quantum computation
and generation of cluster states via the current-controlled
superconducting charge qubit network, which can provide two-
qubit operation between arbitrary pairs of qubits. It is a simple,
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Fig. 1. A current-controlled superconducting charge qubit network structure.
All N charge qubits (Q1, Q2, . . . , QN ) can interact with the charge qubit Q0
by a common large-capacitance Josephson junction (JJ) (denoted as a crossed
rectangle). Each charge qubit Qk (k = 0, 1, 2, . . . , N ) is controlled by a voltage
Vgk and a local magnetic flux ΦXk , whereas the coupling of the two qubits is
adjusted by the bias current Ib .

scalable and feasible scheme for the generation of the cluster
states.

2. Architecture of superconducting qubit network

Since the earliest Josephson charge qubit design [13] was
proposed, a series of improved schemes [1,14,18] have been
explored. Here, based on the architecture of Josephson charge
qubit in Ref. [1], we propose an improved architecture.
Ref. [1] only implements the controllable nearest-neighbor
coupling, but our improved architecture can provide a physical
implementation of two-qubit operation between arbitrary pairs
of qubits. The superconducting charge qubit structure is shown
in Fig. 1. All N charge qubits (Q1, Q2, . . . , QN ) can interact
with the charge qubit Q0 by a common large-capacitance
Josephson junction (JJ) (denoted as a crossed rectangle). For
the kth charge qubit, a superconducting island with the induced
charge Qk = Ck Vgk = 2enk is weakly coupled by two
symmetric direct current superconducting quantum interference
devices (dc SQUIDs) and biased by an applied voltage through
a gate capacitance Ck . Assume that all the Josephson junctions
of the two symmetric dc SQUIDs have Josephson coupling
energy E0

Jk and capacitance CJk . The self-inductance of each
SQUID loop is usually neglected because the loop size (1 µm)
is very small. Pierced by a magnetic flux ΦXk , each SQUID
provides an effective coupling energy −E Jk(ΦXk) cos φk A(B),
with E Jk(ΦXk) = 2E0

Jk cos(πΦXk/Φ0) and the flux quantum
Φ0 = h/2e. The conjugate phase drop φk A(B), with subscript
A(B) labeling the SQUID above (below) the island, equals the
average value [φL

k A(B) + φR
k A(B)]/2 of the phase drops across

the two Josephson junctions in the dc SQUID, with superscript
L(R) denoting the left (right) Josephson junction.

3. Long-range interaction and universal gates

When ΦXk =
1
2Φ0 and Vgk = (2nk + 1)e/ck for all boxes,

except k = j, 0, the charge qubit Q0 and bias current (Ib)
coupling JJ only connect to the j th charge qubit, forming a
controllable two-qubit system. In the spin-1/2 representation,
based on charge states |0〉 = |nk〉 and |1〉 = |nk + 1〉, the
effective Hamiltonian of the system becomes [1]
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where ECk = (2e)2/2CΣ , CΣ = 4CJk + Ck is the total
capacitance of the qubit island and ngk = Ck Vgk/2e is the
(dimensionless) charge induced on the qubit island by the
gate voltage Vgk . In the Eq. (1), when bias current Ib = 0,
any single-qubit operation can be performed by adjusting gate
voltage and local magnetic flux ΦXk . We give the following
definitions to simplify our presentation.

U (k)
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z ], (3)

where α = −
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2 (1 − 2ngk)τ/h̄, here, τ is a switching time,
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When both qubits work in their degeneracy points (Vgk =

(2nk +1)e/ck), the Hamiltonian of the system in Eq. (1) reduces
to
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For convenience, we give a concise form of Eq. (5) as

H = −E J0σ
(0)
x − E J jσ

( j)
x + C0 jσ

(0)
x σ

( j)
x , (6)

where
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We assume E J0 = E J j = C0 j =
−π h̄
4τ

(τ is a given period
of time), which can be obtained by suitably adjusting the bias
current Ib and magnetic flux ΦXk . Then Eq. (6) becomes

H =
−π h̄
4τ

(−σ (i)
x − σ
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x + σ (i)

x σ
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x ). (7)

From Eq. (7), one can obtain a controlled-phase gate UC PG =

exp[iπ
4 (1 − σ

(0)
x − σ

( j)
x + σ

(0)
x σ

( j)
x )], which keeps the two-

bit states |+〉0|+〉 j , |+〉0|−〉 j , and |−〉0|+〉 j unchanged while
transforming |−〉0|−〉 j to −|−〉0|−〉 j when the two qubits are
subject to the evolution. Here, |±〉 are defined by |±〉 =

(|0〉 ± |1〉)/
√

2. Using V j = U ( j)
x (−π

4 )U ( j)
z (π

4 )U ( j)
x (π

4 ), we

implement a controlled-NOT gate UCNOT = V Ď
j UCPGV j ,
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