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a b s t r a c t

A two dimensional version of a Heusler alloy X2MncZ1−c is presented. The Hamiltonian includes chemical
interactions between nearest neighbors and magnetic interactions between first, second and third
neighbors. The ground state phase diagrams at zeromagnetic field and their range of stabilitywith regard
to the chemical and magnetic interactions are calculated by using the method of linear inequalities. The
unit used in the calculation is a five point cluster, which allows describing an ordered alloy with the
Mn atoms forming decorated ferromagnetic, antiferromagnetic, superantiferromagnetic and other more
complex arrangements. Results for c = 1/2 and 3/4 are presented.
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The Heusler alloys, are ternary systems X2MnZ that have been
know since 1903 [1]. These systems have manganese as one
of the main components and show a rich variety of magnetic
phases, depending on the two other chemical components and
on the temperature [2]. These alloys looked very promising for
applications since the manganese atom has a magnetic moment
close to 4µB. These ternary systems crystallize with L21 structure,
and in general the X element is a noble or transition metal and the
Z element has s and p valence electrons. According to a previous
calculation [3] the role of the X atoms is to determine the lattice
constant and the Z atoms mediate the interactions between Mn
atoms.
There are more complex Heusler alloys in which the element

X is also magnetic. Recently these kind of systems have been
intensively studied owing to great potential for spintronics [4,5],
magnetically driven actuators [6] and shapememorymaterials [7].
Two of those systems are Co2MnGa and Ni2MnGe, in which the
magnetic properties of Co and Ni make the alloy more complex
but at the same time richer in magneto-electronic behavior. In
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particular, the Co alloys has a density of states that show half-
metallicity. i.e. the majority and minority spin bands show a
metallic and semiconductor character. This makes this alloys
attractive for applications in spintronics where the capability
to inject electrically spin-polarized carriers into unpolarized
semiconductors [8–10] is the key element. On the other hand,
the Ni alloys are important as magnetic shape memory materials.
Here we restrict to Heusler alloys with Mn as its only magnetic
component.
This paper has a two-fold motivation. On one hand, a two

dimensional model of a Heusler alloy may be more tractable
than the three dimensional version and may serve to identify key
parameters and recognize interesting features. In addition, due
to the complexity of the three-dimensional Heusler alloys, the
interplay of magnetism and chemical order, has been addressed
only in a reduced number of theoretical studies [11,12]. The
simplification to a two-dimensional system, let us study further
the chemical and magnetic-order interplay, which rules the
properties of these systems. Aware of the development of
sophisticated techniques which allow one to deposit multiple
chemical elements, it might be possible to grow in the future such
two-dimensional systems.
Here, for the first time, we present calculations of the ground

states of a two dimensional version of a Heusler alloy within
a phenomenological model in which only pairwise interactions,
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Fig. 1. (a) The two-dimensional Heusler crystalline structure showing the various
sublattices occupied by the X, Mn, and Z elements. (b) The decimated lattice
containing only the sites occupied by Mn and Z elements. The five-point cluster
showing the βi and the γ sublattices are also displayed.

chemical and magnetic, are included. The chemical interactions
between nearest neighbors of type I and J are denoted by VI,J .
The magnetic interaction between the nth neighbor manganese
atoms are denoted by Jn. In Fig. 1(a), we show the two dimensional
Heusler latticemodel considered here. It is a square lattice inwhich
the four interpenetrating lattices are also square; two of them are
occupied by the X atoms, and the other two by the Mn and the Z
components.
Among the rich variety of behaviors, it has been found [2], there

are alloys in which, in a wide range of temperatures, the X element
does not interchange sites with the other components (Pd2MnIn,
Pd2MnSn). Thus, the element X just provides the skeleton and one
can ignore the two sublattices occupied by the X element and
decimate these sets of sites. By applying this procedure, we obtain
the lattice shown in Fig. 1(b), where we show only the two square
interpenetrating lattices occupied by the elements Mn and Z.
In terms of the chemical and magnetic interactions, the total

internal energy of the system can be written as

E = −
∑
I,J

NI,JVI,J −
3∑
n

∑
i,j

(σiσj)nJn, (1)

where I and J denote theMnandZ atoms,σi andσj are themagnetic
spins of Mn with orientation up (↑) or down (↓), and n = 1, 2, 3.
At low temperatures, positive values of V1 = VMnMn + VZZ −

2VMnZ drive the alloy to an ordered array while negative ones
tend the alloy to separate into two phases. Furthermore, positive
(negative) values of Jn favor a ferromagnetic (antiferromagnetic)
alignment between the n-th Mn neighbors.
To calculate the ground states that can be attainable with the

interactions considered in our Hamiltonian, we take the five-point

cluster shown in Fig. 1(b). We denote the sites of the square vertex
βi, i = 1, 2, 3, 4, and the one in themiddle byγ . One cannotice that
in this cell, the number of first, second, and third neighbors are z1 =
4, z2 = 4, and z3 = 2, respectively. Since each site can be occupied
by Mn↑, Mn↓ or Z, the total number of configurations is 35 = 243,
however,many of themare degeneratewith amultiplicityλr . Here,
we consider only ordering alloys and by taking into account the
symmetry of the cluster one finds that the total number of different
configurations reduces to 34. If we denote the probability to find
the Xr configuration by xr , it follows that

34∑
r=1

λrxr = 1. (2)

There is a second constraint that has to be observed and involves
the nominal concentration of Mn atoms in the binary system

34∑
r=1

crλrxr = c (3)

where cr is the concentration of Mn atoms in the cluster r .
Furthermore, this cluster allows to describe ordered arrange-

ments corresponding to the concentrations c = 1, 7/8, 3/4, 5/8,
1/2, 3/8, 1/4, 1/8, and 0. In this communication we only report
the cases of c = 1/2 and 3/4.
In Fig. 2 we present the different arrangement possible within

the five-point cluster in the case of the equiatomic alloy. All the
figures represent a complete ordered alloy with the Mn atoms
arrangedwith differentmagnetic patterns. It is important to notice
that in this case there are no pairs of Mn atoms as nearest
neighbors. In Fig. 2(a), the Mn atoms order ferromagnetically (F)
and the phase is characterized by J2 > 0, J3 > 0. In Fig. 2(b)
the manganese atoms are arranged in alternating diagonals with
ferromagnetic and antiferromagnetic coupling (F–AF). This pattern
has an equal number of ferromagnetic and antiferromagnetic
second and third neighbor pairs. Thus the magnetic contribution
to the energy is zero. A superantiferromagnetic (SAF) pattern
is shown in Fig. 2(c). This phase has an equal number of
ferromagnetic and antiferromagnetic second neighbor pairs and
the third neighbor pairs are coupled antiferromagnetically (J3 <
0). Finally, Fig. 2(d), represents the manganese atoms with
antiferromagnetic order (AF). This phase is characterized by J2 < 0
and J3 > 0.
Now we proceed to calculate the ground state of the system as

a function of the energy parameters. Since E is a linear function
of the configurational parameters xi, all possible ordered states
are located inside a convex polyhedron in configurational space.
The range of stability with respect to the interaction parameters is
given by an hypercone with extreme rays defined by the normals
to all phases of the configurational polyhedral converging to the
vertex in question [13].
The results for the ground states for the equiatomic system

depend on the energy parameters VMnZ, J2 and J3. In Fig. 3(a)
we show the results in the V12 = VMnZ/J2 versus J32 = J3/J2
space and assuming positive values for J2. The only arrangements
possible in this part of the phase space are the ferromagnetic state
F, and the superantiferromagnetic state SAF. Since J2 > 0 the
states with ferromagnetic arrangements between second nearest
neighbors are the ones that are stable. As mentioned above, the
SAF is stabilized only by negative values of J3. In the hatched area
the energy is positive; i.e. the magnetic energy does not exceed
the negative chemical energy that tends the system to form a
segregated alloy.
We show in Fig. 3(b) the phase diagram in the J3V = J3/VMnZ

versus J2V = J2/VMnZ, for the case VMnZ < 0. The possible
stable states are the ferromagnet F, the antiferromagnet AF, and
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