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On the interaction of vacancies in a two-dimensional rare-gas crystal
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Abstract

We study the interaction between vacancies in a two-dimensional van der Waals crystal by molecular dynamics simulation. We find that the
vacancy–vacancy interaction is attractive at short distances, but its binding energy is not enough to keep the pair bounded at the melting region
where the vacancies are more likely to be created.
c© 2007 Elsevier Ltd. All rights reserved.
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Although an old issue [1,2], the study of point defects
in crystals is still an interesting problem [3]. Recently, a
series of experiments using video microscopy has succeeded
in measuring structural and dynamical properties of defects in
colloidal crystals [4], which has provided new experimental
tools to study new problems in condensed matter physics [5].
Point defects in solids are of general interest. For instance, for
quantum crystals point defects like vacancies and interstitials
are supposed to be present in finite concentrations at any
nonzero temperature. But, even at zero temperature, they
have been speculated to exist as a supersolid [6]. From
the theoretical point of view, the role of the point defects
to the understanding of the general mechanism of melting,
and in particular in a two-dimensional system has been an
object of considerable amount of research [7]. Stishov [8]
made an extensive analysis of the classical thermodynamics of
melting calling attention to a deep investigation on the second-
order character of this transition. Toxvaerd [9] studied the
liquid–gas interface in a two-dimensional fluid by molecular
dynamics. Latter, he calculated the melting line for a two-
dimensional Lennard-Jones system using molecular dynamics
and showed that melting is a first-order phase transition [10].
Frenkel and McTague [11], using the same method, reached
an opposite conclusion which gives support to the theory of
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two-stage melting for these two-dimensional systems proposed
by Halperin and Nelson [12] and independently by Young
[13] (a further elaboration of a theory earlier proposed by
Kosterlitz and Thouless [14], the KTHNY theory). Following
that, Toxvaerd [15,16] published new molecular dynamic
simulations of the same system, showing that it had the same
qualitative features of the respective three-dimensional system,
a liquid–gas critical point and a first-order phase solid–fluid
transition with no evidence of the two-stage melting, and also
investigating the size effects on melting and the presence of
defects just before the melting. Barker et al. [17] studied the
phase diagram of this transition in the same system and again
showed the evidence of first-order character and qualitative
similarity to the three-dimensional system. Dash [18] noticed
that anharmonicity and vacancies can lead to mechanisms that
could circumvent the continuous melting. Finally, with the
technological advancement, setting up systems with a finite
number of particles became a daily reality. Motivated by this,
Schweigert et al. [19–22] investigated the role of point defects
on melting and crystallization in two-dimensional new systems
like confined dust plasma crystals and Coulomb clusters and
in quasi-two-dimensional systems like classical bylayer Wigner
crystals.

Meanwhile, the experimental investigation of point defects
is troubled by the fact that the concentrations of these defects
are very small and only near the melting point they achieve their
highest values [23,24]. On the other hand, the experimental
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Fig. 1. Two-dimensional triangular lattice with a single vacancy, a divacancy
and two vacancies separated by four lattice spacings.

and theoretical study of defect interaction has attracted not too
much attention so far [25–28], though its knowledge might
provide a better understanding of the microscopic details of the
melting mechanism.

This work was motivated by the recent calculations of
single point defect interactions in two-dimensional systems
like Wigner crystal [27], columnar Wigner crystal [26],
and colloidal crystal [28], which show that point defects’
interactions in such systems are strongly attractive and must be
implied to the investigation of several physical properties [29].

In this work, we apply molecular dynamics simulation to
study the energy of formation and interaction of vacancies in
a two-dimensional rare-gas crystal. The simulated system is
formed by atoms that are treated as “particles” confined to two-
dimensions and interacting through a Lennard-Jones central
pair-wise potential. The Hamiltonian for such a system is given
by
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where ri j = |ri − r j |; the first term in the right-hand side
is the kinetic energy of the system and the second term is its
interaction potential. The energy, length and temperature are
in units of ε, σ , and ε/kB (kB is the Boltzmann constant;
ε/kB = 119.8 K and σ = 3.4 Å are the physical parameters
of Argon) respectively. The essential feature of this model
is that its phase diagram is qualitatively similar in two and
three dimensions [30,31]. Therefore, in this two-dimensional
simulations the results might be useful for those working on
interfaces and solid surfaces, and can qualitatively account for
some aspects of the behavior of the three-dimensional crystal,
i.e. liquid–gas critical point and first-order character of the
transition. Such model is appropriated to study rare-gas crystals
since the Lennard-Jones interaction potential describes Argon,
Xenon and Krypton well.

In order to model the system with a vacancy, an atom is
removed from a site of the most stable two-dimensional lattice
which is the triangular lattice. Since it is known that this should
cause some relaxation, to avoid any complication we choose
to place the vacancy at the center of the simulation box at
one of the sites of the triangular lattice. Fig. 1 is a pictorial
representation of a single sixfold vacancy, a divacancy and two
vacancies separated by four lattice spacing.

The calculation of the energy of formation of a single
vacancy was performed by two independent simulations at
the same density and temperature: one for the ideal system,
i.e. without the defect, and another one for a defective system,

Fig. 2. Energy of formation of a vacancy as a function of temperature at
ρ = 0.9 in reduced units. Computed for systems with 340 lattices sites.

i.e. with a point defect. For the latter, after placing the defect
we rescale the dimension of the simulation box by a factor
to reset the system to the original density. By doing this, we
prevent the need to correct the calculation of the energy due to
changes in the density caused by the inclusion of the defect. The
difference between the energies of the defective and the perfect
system is the energy of formation of the vacancy. Subsequently,
we can define the number of vacancies Nv as the number of
atoms minus the number of lattice sites. Therefore, the energy
of formation of Nv vacancies in the lattice with N sites is [27]

Ev = [e(N + Nv) − e(N )](N + Nv), (2)

where e(n) is the energy per atom for a system containing n
atoms. For a monovacancy we have Nv = −1.

We choose not to enforce any kind of constraint that
would restrict the center of each particle to lie within its own
Wigner–Seitz cell, as it has been done in the past to allow
for local lattice relaxation only [27,32]. It means that the
defects are free to move around as well as to change its initial
symmetry during the evolution of the system in thermodynamic
equilibrium.

We have performed several simulations for lattices with
N = 56, 120, 168, 288, 340, 418, 780 particles at several
densities and temperatures, and a few runs for a larger system
to check size effects, with N = 2340, which give agreement
with the results for the smaller lattice within the statistical error.
But, as the system gets larger, the procedure used to calculate
the energy of formation of vacancy becomes inadequate since
these calculations require high accuracy in order to obtain the
differences of energies. Surface effects are eliminated by using
periodic boundary conditions. To make the evolution of the
classical equations of motion, we have used the fifth-order
predictor–corrector algorithm, with a time step varying from
2.5 × 10−2 to 5.0 × 10−3 in reduced units, as it has some scale
dependence with the atomic density. The physical quantities are
obtained by averaging over 100 000 time steps divided in 10
blocks of 10 000 time steps after the system has reached the
equilibrium which was assumed to have occurred during the
first 10 000 time steps.

In Fig. 2, we show the energy of formation of a monovacancy
as a function of the temperature for a fixed value of the density,



Download	English	Version:

https://daneshyari.com/en/article/1595781

Download	Persian	Version:

https://daneshyari.com/article/1595781

Daneshyari.com

https://daneshyari.com/en/article/1595781
https://daneshyari.com/article/1595781
https://daneshyari.com/

