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dc Josephson effect in metallic single-walled carbon nanotubes
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Abstract

The dc Josephson effect is investigated in a single-walled metallic carbon nanotube connected to two superconducting leads. In particular, by
using the Luttinger liquid theory, we analyze the effects of the electron–electron interaction on the supercurrent. We find that in the long junction
limit the strong electronic correlations of the nanotube, together with its peculiar band structure, induce oscillations in the critical current as a
function of the junction length and/or the nanotube electron filling. These oscillations represent a signature of the Luttinger liquid physics of the
nanotube, for they are absent if the interaction is vanishing. We show that this effect can be exploited to reverse the sign of the supercurrent,
realizing a tunable π -junction.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the discovery by Iijima in 1991 [1], carbon nanotubes
have attracted much interest in the community of Mesoscopic
Physics. Due to their peculiar electronic and mechanical prop-
erties, they are regarded as optimal candidates for nanotech-
nological implementations, and have been successfully applied
to the realization of quantum transistors [2,3], electron waveg-
uides [4], interferometric devices [4,5] as well as nanoelec-
tromechanical systems [6]. Recent experiments have spurred
the interest in superconducting properties of these materials:
it has been observed indeed that proximity-induced supercon-
ductivity can arise in nanotube bundles in contact with super-
conductors (S); in ropes, intrinsic superconductivity has also
been measured [7,8] and explained in terms of combination
of electron coupling to the breathing phonon modes and inter-
tube Cooper-pair tunneling [9]. Individual multiwall nanotubes
have recently been utilized in the fabrication of superconductor-
nanotube-superconductor hybrid structures, allowing to reveal
the dynamics of multiple Andreev reflections [10] and to real-
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ize a controllable supercurrent transistor [3]. In contrast, the in-
vestigation of superconducting properties of single-walled nan-
otubes in hybrid structures has been only partly explored so far.

Metallic Single-walled carbon nanotubes (SWNT) are
known to behave as 1D conductors with four conduction
channels exhibiting ballistic transport up to several µm [11,
12]. Different from other 1D metals, SWNT preserve their
conduction properties even at very low temperature, since
the cylindrical lattice geometry prevents the arising of
Peierls distorsion. They thus offer promising features for
interconnecting components of nanodevices. Due to their 1D
character, electronic correlations have dramatic effects on the
behavior of SWNT: experimental evidences of a power law
behavior for the conductance as a function of temperature [13]
indicate that SWNT exhibit a Luttinger liquid (LL) behavior,
and that their elementary excitations are not fermionic quasi-
particles like that in normal 3D metals [14,15]. It is thus
expected that, when an SWNT is in contact with S leads at
equilibrium, electronic correlations might significantly modify
the behavior of the supercurrent with respect to junctions
realized with a normal metal. This issue has been addressed in
the literature [16–21] and it has been shown that the effect of
interaction is particularly enhanced when the coupling between
the LL and the S leads is realized through tunnel junctions.
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Fig. 1. Schematic set-up of the S-I-SWNT-I-S junction under investigation.

However, most of these investigations focused on the case
of a two-channel (i.e. one spinful mode) LL, and cannot be
straightforwardly applied to the case of a four-channel SWNT.
In this paper we discuss this problem by investigating the
dc Josephson effect in an S-I-SWNT-I-S junction, and show
that new features arise due to the peculiar band structure of
SWNT. The paper is organized as follows: In Section 2 we
briefly review the model used to describe SWNT, accounting
for the electron–electron interaction within the Luttinger Liquid
theory. In Section 3 we present our results about the Josephson
current. We find that the interaction yields a two-fold effect on
the critical current jc: on the one hand it modifies the scaling
law of jc as a function of the junction length d; on the other
hand, it introduces oscillations of jc as a function of either the
electron filling or the junction length d . The latter oscillations
are absent for a non-interacting system, and therefore represent
a signature of Luttinger liquid behavior on the supercurrent.
Finally, in Section 4 we discuss the results and propose possible
implementations to observe this effect.

2. Modeling the system

The set-up of the system is depicted in Fig. 1: a
metallic SWNT is coupled through tunnel contacts to two
superconducting leads to realize an S-I-SWNT-I-S junction. For
simplicity, here we limit our treatment to the case of armchair
nanotubes; we also assume that the S leads have the same
gap |∆|; the two superconducting order parameters thus read
∆1,2 = |∆|eiχ1,2 , where χi is the superconducting phase of
the i th lead. We are interested in the dependence of the critical
current on the junction length d; we thus analyze the regime

λc, ξ � d � L (1)

where λc represents the width of the contacts, ξ the coherence
length of the S electrodes, d the electrode distance, and L the
length of the nanotube. The regime (1) is quite realistic in view
of customary fabrication of µm long ballistic nanotubes [12],
and the recent realization of superconducting tips for Scanning
Tunneling Microscope (STM) [22–24] or of 10–20 nm
short superconducting finger leads. In order to simplify the
mathematical treatment without altering the essential physical
features of the regime (1), we shall henceforth assume that
the tunnel contacts are point-like, the coherence length ξ is
vanishing, and the length of the nanotube is infinite, L → ∞.

In a metallic nanotube the lowest band consists of four
electron branches located around two Fermi points αkF , with
α = ±1; the energy separation to the second band is of the
order of eV, so that the latter can be in practice neglected up
to a broad range of thermal excitations. Within this energy

Fig. 2. The electron band dispersion relation of an SWNT originates from the
two-sublattices honeycomb carbon structure, and is characterized by four Fermi
points. The latter can be identified through two Fermi momenta: kF denotes the
band crossing points, whereas qF accounts for the deviation from kF , i.e. the
electron filling of the SWNT.

scale, the energy dispersion of the lower band is linear under
quite good approximation, as shown in Fig. 2. SWNT can
thus be regarded as four-channel 1D metals. As discussed
in the introduction, their 1D character implies that a careful
treatment of the electron–electron interaction is needed. It is
indeed well-known that transport properties of SWNT cannot
be explained in terms of the customary Fermi liquid theory,
since their elementary excitations are bosonic plasmon modes,
rather than fermionic quasi-particles. A model for SWNT based
on the Luttinger liquid theory has been formulated a decade
ago [25,26], and applied in a number of problems [27–33].
Here we briefly remind the main aspects that are relevant to our
discussion: An SWNT can be ideally obtained by wrapping into
a cylinder shape a graphene sheet, whose honeycomb carbon
lattice consists of two sublattices p = ±. A nearest-neighbor
tight-binding calculation of the π -electrons in the graphite,
together with appropriate wrapping boundary conditions, leads
to express the electron field in the nanotube as

Ψσ (x) =

∑
α=±,r=R/L

∑
p=±

Upr ei(αkF +rqF )xψαrσ (x) (2)

where σ =↑,↓ denotes the spin component and x the
longitudinal coordinate in the nanotube. In Eq. (2), Upr are the
entries of the matrix

U = −
e−iπ/4
√

2

(
1 1
i −i

)
(3)

describing the unitary transformation from the sublattice
electron fields into the right (left) moving fields description.
The exponential terms in Eq. (2) represent the fast oscillating
contribution to the electron wave function, where the wave
vector qF is related to the electron filling exceeding the Fermi
points ±kF , as illustrated in Fig. 2. Finally the field ψαrσ (x)
varies slowly over the scale of Fermi wavelength.

In order to account for the electron–electron interaction,
it is useful to represent the electron fields ψαrσ through the
bosonization identity

ψαrσ (x) =
ηαrσ

√
2πa

exp{iϕαrσ (x)} (4)

where ϕαrσ (x) is the plasmonic field describing the long
wavelength fluctuations. The operators ηαrσ are Klein
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