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Abstract

In anisotropic crystals, the compliance (s;;) and the stiffness (c;;) matrices are usually specified in the orthogonal coordinate systems
(X1, Y1, Z1), which do not coincide with the crystal axes (X, Y, Z) used commonly, excepting cubic and orthorhombic crystal systems, and
must be transformed to an arbitrary orthogonal coordinate system chosen to be convenient for the question. Such a transformation has been done
in this paper for hexagonal crystals and a general compliance transformation relation is given. Accordingly, the useful expressions of the Young’s

modulus E(hkl), Poisson’s ratio v(hkl) and X-ray elastic constants (XREC) s (hkl) =

—z((%ill)) and %52 (hkl) = ]JE?T(ZII()D are also given in

terms of the Miller indices of the lattice plane (kk/) in the crystal axes (X, Y, Z) used commonly.
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1. Introduction

Metal films have been used extensively in decorative,
protective, electronic, magnetic and optical devices and
systems. These films usually have strong textures and so
anisotropic elasticity [1,2]. The anisotropic elasticity can result
in directionally dependent stress and strain energy [3-5],
abnormal grain growth and texture transformation in thin metal
films [6-10]. In the X-ray diffraction method for determining
residual or applied stresses in a polycrystalline specimen,
only those grains properly oriented to diffract at each tilt
contribute to the diffraction profile. This selectivity implies
that the X-ray elastic constants (XREC) sj(hkl) = — (ki)

E(hkl)
and %sz(hkl) = % connecting the lattice strain ¢ =
d(hkl)—dy(hkl)

4o (i) to the stresses will vary with the particular
set of planes (hkl) chosen for measurement [11]. In bulk
materials, isotropic behavior is obtained when the individual
crystallites are oriented throughout space with equal directional
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probability. The resulting macroscopic properties are usually
calculated by considering the directionally dependent values
averaged over all orientations in space [12].

In anisotropic crystals, however, the elastic compliance
constant (in brief, the compliance) (s;;) and/or the elastic
stiffness constant (in brief, the stiffness) (c;;) matrices
are usually specified in the orthogonal coordinate systems
(X1, Y1, Z1), which do not coincide with the crystal axes
(X, Y, Z) used commonly, excepting cubic and orthorhombic
crystal systems, and must be transformed to arbitrary
orthogonal coordinate systems which are chosen to be
convenient for the question. Such a transformation has been
done in this paper for hexagonal crystals and a general
transformation relation is given for compliance from orthogonal
coordinate systems (X1, Y1, Z1) to another arbitrary orthogonal
system. Emphatic analysis is taken for transformation to
laboratory coordinate systems (X2, Y2, Z>) in which the X-ray
diffraction is sampled for example and 13 nonzero components

s/, are derived to be dependent only on the polar angle

1

¥ of the normal direction of the plane (hkl) due to the
crystallographic Z-axis having the highest six-fold rotation
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Fig. 1. Coordinate systems of crystal axes (X, Y, Z), orthogonal coordinate
systems (X1, Y1, Z1) and laboratory coordinate systems (X», Y>, Z2).

symmetry. Accordingly, the useful expressions of the Young’s
modulus E (hkl), Poisson’s ratio v(hkl) and XREC sy (hkl) =
— g((};/,ill)) and %sz(hkl) = 1-;1(;}521131) are also given in terms of
the Miller indices of the lattice plane (kkl) in the crystal axes

(X, Y, Z) used commonly.

2. General compliance transformation relation

For writing out tensors or matrices which represent the
compliance or stiffness of hexagonal systems, as shown in
Fig. 1 (left), we use orthogonal coordinate systems (X1, Y1, Z1)
instead of crystal axes (X, Y, Z) used commonly. The axis Y
is in the X, Y plane at 90° and 30° to X and Y respectively.
Another laboratory coordinate systems (X3, Y2, Z>) shown in
Fig. 1 (right), in which diffraction is sampled for example, is
defined such that Z, is in the normal direction of the lattice
plane (hkl) (noted with Miller indices in crystal axes (X, Y, Z))
whose lattice plane distance d(hkl) is measured by X-ray
diffraction.

As shown in Fig. 1 (right), the transformation matrix
(ar¢) from the orthogonal coordinate systems (X, Y1, Z1) to
laboratory coordinate systems (X7, Y2, Z2) can be obtained
through the following two rotations, one by an angle ¢ about
the Z; axis, and the other by v about the Y, axis

cosyy 0 —siny cosp sing O
(ar) = 0 1 0 —sing cos¢p O
sinyy 0 cosy 0 0 1
cosyrcos¢g cosysing —siny
= —sing cos ¢ 0 . @))
sinyycos¢ sinysing cosy

For the (hkl)-plane, the transformation matrix (a,;) can be
expressed as the equation given in Box 1; where K = h+—J§",
L = %1, a and c are lattice constants of the hexagonal metal as
shown in Fig. 1 (left).

In laboratory coordinate systems (X3, Y», Z»), the basic
equation relating stress oy; to strain ¢;; is the generalized form

of Hooke’s Law [13]
eij = sijou (. j k. 1=1,2,3) @)

where s;;,, are the compliances in laboratory coordinate sys-
tems (X», Y2, Z7) and can be transformed from the compli-
ances Synop in orthogonal coordinate systems (X1, Y1, Z1)

/ ju—
Sijki = Qim@jnAkoQlpSmnop- 3)

It is worth noting that this equation typifies 81 equations
each with 81 terms on the right-hand side, making a total of
81 x 81 = 6561 terms in all.

The symmetry of spnop (or slf jkl) in the first two and the
last two suffixes, that is Synop = Sumop = Smnpo, makes only
36 of the 81 components Sypop (OF sl.’ jkl) independent and it
is possible to use the matrix notation. The first two suffixes
are abbreviated into a single one running from 1 to 6, and the
last two can be abbreviated in the same way, according to the
following scheme

Tensor notation: 11 22 33 23,32 31,13 12,21
Matrix notation: 1 2 3 4 5 6.

At the same time factors of 2 and 4 are introduced as follows

Smnop = Sij wheniand jare1,2or3

2Smnop = Sij When either i or j are 4,5 or 6

4Smnop = Sij when both i and j are 4, 5 or 6.

The components of the stress and the strain tensors are also
written in a single suffix running from 1 to 6
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