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Abstract

For description of dispersed phases in many practical applications, population balance equations (PBE) of entities under investigation
are coupled with the thermo-fluid dynamics of the surrounding fluid. Hence, solution of PBE needs to be implemented in a computational
fluid dynamics (CFD) code, which leads to additional computational cost. The excess computational demand has limited the applicability of
numerical techniques such as class method (CM) or Monte Carlo method (MCM). Although quadrature method of moments (QMOM) and
direct quadrature method of moments (DQMOM) have been shown to be accurate and computationally efficient when used with CFD codes,
numerical difficulties can arise for cases where there is a large variation of moments. To circumvent this problem, the standard QMOM was
modified by incorporating an adjustable factor, which allows the moments of size distribution to be adjusted, in order to improve the accuracy
or reduce CPU time. The performance of this method for solving PBE has been evaluated by case studies involving pure aggregation and
breakage, agglomeration and breakup, as well as particle growth, which have analytical solutions or exact solutions from CM or finite element
method (FEM). The results demonstrate that the modified QMOM is capable of achieving high accuracy at a low CPU cost if an appropriate
adjustable factor is chosen. An interesting feature is that different adjustable factors can be assigned to different processes depending on the
balance between accuracy requirement and CPU cost.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Dispersed system is encountered in many industrial pro-
cesses. The behavior of dispersed systems such as gas–liquid or
liquid–liquid systems depends strongly on the flow characteris-
tics of the dispersed phase. Distribution of the dispersed phase
size and different particle or bubble shapes may alter the flow
pattern considerably. The effect of dispersed phase size distri-
bution cannot be taken into account by using a single mean size
of the dispersed phase in two-fluid models. Therefore, popula-
tion balance model is employed to describe the distribution of
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entities (e.g. bubble, particle and drop) and their micro-
behaviors (breakage or coalescence) which affect the distribu-
tion.

The distribution of entities depends not only on space and
time referred as external coordinates but also their own prop-
erties referred as internal coordinates. The micro-behavior
can be divided into continuous behavior (particle growth or
dissolution) or discontinuous behavior (bubble breakage or
coalescence). Population balance equations (PBE) contain
external time and location coordinates as well as internal
entity property coordinates, the source term of which usu-
ally involves single or multi-integrals. As the form of PBE
is very complex and analytical solutions are available only
for the simplest cases, numerical techniques are required in
most practical applications. Such techniques should be ac-
curate and with a relatively low computational cost. Several
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numerical methods have been developed to satisfy the accuracy
requirement, among which are class method (CM) (Kumar
and Ramkrishna, 1996a, b; Vanni, 2000), Monte Carlo method
(MCM) (Smith and Matsoukas, 1998; Tandon and Rosner,
1999) and method of moment (MOM) (McGraw, 1997; Rong
et al., 2004). In the CM, the continuous size range of the inter-
nal coordinate is partitioned into a finite series of contiguous
subintervals or bins. Good accuracy can be achieved if a large
number of size groups are used, but at the expense of high
CPU cost due to increased number of scalars to be solved. The
number of classes is a potential problem in computational fluid
dynamics (CFD) applications, especially when a multi-fluid
flow model needs to be used; hence the CM method is not a
feasible approach in practice. MCM is based on the solution
of PBE in terms of its stochastic equivalent. A population of
particles undergoes the “real” physical processes, and events
occur according to the appropriate probabilities. In order to re-
duce the statistical error, a very large number of particles must
be used. Due to limitations on the computational resources, the
full incorporation of MCM into CFD codes is still intractable
(Rong et al., 2004). In MOM, the particle size distribution
(PSD) is not tracked directly but through its moments inte-
grated over the internal coordinates. This approach has many
advantages such as low CPU time and relatively high accuracy.
The standard method of moment (SMM) needs to be closed,
which limits its practical application. McGraw (1997) intro-
duced the Gaussian quadrature approximation for PSD which
closes the SMM, and proposed quadrature method of moments
(QMOM). QMOM has been widely used for PBE in recent
years (Marchisio et al., 2003a, b; Wang et al., 2005a, b), and
has been extended to bivariate PBE applications (Wright et al.,
2001, Yoon and McGraw, 2004a, b). However, this approach is
difficult to handle systems where there is a strong dependence
of the dispersed-phase velocity on internal coordinates (e.g.
fluidized bed and bubble column), and can become quite com-
plex in the case of bivariate PBE (Marchisio and Fox, 2005).
Although the direct quadrature method of moments (DQMOM)
was proposed by Rong et al. (2004), which can be extended to
multi-variable application in a straightforward manner (Rong
et al., 2004) and has considered different characteristic lengths
with different velocities. Because DQMOM uses different
phases to distinguish characteristic lengths, hence is more
time-consuming than QMOM when coupled with CFD.

Previous studies have shown that the accuracy and time con-
sumption of MOM depend largely on the relative magnitude of
the moments. The matrix becomes extremely difficult to solve
if the moments vary over a large range. In such cases, solu-
tion of differential equations and product-difference (PD) al-
gorithms in QMOM or matrix inversion in DQMOM would
require excessive computational resources. When the source
term of PBE is too large, negative weights or abscissas may
appear in the simulations, which do not have physical meaning
and will result in abortion of the computation. This potential
problem can be avoided if the moments could be modified in a
controlled manner. To serve this purpose, a modified QMOM
has been developed. In the new method presented here, the vari-
ation among the moments can be controlled by an adjustable

factor. A number of test cases have been carried out, includ-
ing breakage, aggregation and growth of entities to evaluate the
performance of this method for PBE.

2. Population balance model and solution

2.1. Population balance model

In order to describe the PSD in a certain system, internal and
external coordinates, which are referred as entity state space,
must be employed. Number density function (NDF) is com-
monly used to describe this distribution in the state space. NDF
can be defined in several ways depending on the properties
of the system concerned. Given the coordinates of the prop-
erty vector �= (�1, . . . , �N) that specify the state of the entity,
the NDF f (�1, . . . , �N ; x, t) is defined as follows (Marchisio
et al., 2003b):

f (�1, . . . , �N ; x, t) d�1, . . . , d�N = f (�; x, t) d�, (1)

which represents the number of entities with a value of the
property vector between � and � + d� at time t and location
x. Eq. (1) may have different forms depending on the entity
property. As single length property is considered in this paper,
the property vector � becomes a scalar, L.

PBE is a continuous statement of NDF. If single characteristic
length property is considered, PBE can be defined as

�f (L; x, t)

�t
+ �

�xi

(〈ui〉Lf (L; x, t)) = S(L). (2)

Eq. (2)conforms to the Einstein sum assumption, where
f (L; x, t) is the NDF; 〈ui〉L is the entity mean velocity con-
ditioned on property value L at i direction; S(L) is the source
term of PBE, which is related to micro-behaviors in a dispersed
system.

Eq. (2) is the transport equation for NDF, and the source
term usually presents itself in single integral, multi-integral or
differential forms.

2.2. Adjustable moment of entity and characteristic
parameters in a poly-dispersed system

In MOM, entity PSD is not tracked directly, but through
its moments integrated over the internal coordinate. In order
to adapt the moment according to a certain PSD, adjustable
moment of the entity PSD is defined as follows:

mk(t) =
∫ ∞

0
Lk/pf (L; t) dL, (3)

where mk(t) is an adjustable moment of the PSD; f (L; t) is
the NDF of characteristic length L and p is the adjustable factor
(p = 1 is equivalent to the standard QMOM). The adjustable
moment mk has different physical meanings depending on the
relation of k and p. If k = 0, m0(t) is the total number of entity
considered; when k = 2p, m2p(t) is related to the total area
(At = kAm2p) of all the entities; when k = 3p, m3p is related
to the total volume (Vt = kvm3p). The shape factors kA and kv
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