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Diffusive mass transport in the fluid–porous medium inter-region:
Closure problem solution for the one-domain approach
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Abstract

A challenging problem for diffusive mass transport is to describe and model the phenomena concerning the fluid-porous medium inter-region.
Volume averaging techniques that provide a framework for rigorously addressing the issue of obtaining macroscopic models from pointwise
models at fluid and porous medium scales have been used to attend the problem. The efforts have resulted in two modeling approaches. The
first one, known as the one-domain approach (ODA), considers the system as a continuum where the geometrical (e.g., porosity) and transport
parameters (e.g., diffusivity) display rapid spatial changes in the inter-region. The second one, known as the two-domain approach (TDA), uses
different models for the fluid and the porous medium scales, and matches them via the development of corresponding jump conditions at the
dividing surface. Recent results [Wood, B.D, Quintard, M., Whitaker, S. (2000). Jump condition at non-uniform boundaries: the catalytic surface.
Chemical Engineering Science 55, 5231–5245; Valdés-Parada, F.J., Goyeau, B., Ochoa-Tapia, J.A. (2006). Diffusive mass transfer between a
microporous medium and an homogeneous fluid: jump boundary conditions. Chemical Engineering Science 61, 1692–1704] have shown that
the coefficients involved in the jump conditions can be computed by solving the associated closure problems. However, in the development
of the jump conditions some complications arise due to the difficulty of modeling some of the “surface excess” transport mechanisms that
take place in the inter-region. To address this problem, an implicit formulation based on the ODA and TDA is proposed. Although the ODA
seems to be more suitable for modeling, it requires the knowledge of the spatial variations of the transport parameters. Heuristic interpolations
between the fluid and the porous medium parameters have been commonly used; however, there is no guarantee that such models can provide an
accurate description of the mass flux. Within a ODA framework, the aims of this paper are: (i) to show that the effective diffusivity coefficient
for the case of passive diffusion in a fluid–porous medium inter-region can be posed as a closure problem derived from volume averaging
techniques and (ii) to use a simple one-dimensional model to show that a complete knowledge of spatial variations of diffusivity and porosity
are necessary for an accurate description of the mass transport phenomena in the entire fluid–porous medium system. The analysis has allowed
us to identify a new contribution to the jump at the dividing surface. This contribution consists of the accumulation that occurs at the dividing
surface even when there is no chemical reaction or adsorption taking place.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The derivation of effective medium (i.e., macroscopic) equa-
tions for transport phenomena in multiphase systems is of
prime importance in many applications, from chemical pro-
cess in porous catalysts to contaminant dispersion in soils. As
examples one can cite mass transfer in packed bed reactors
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(Carberry, 1976; Froment and Bischoff, 1979; Fogler, 1992)
which are used in many industrial applications such as methanol
synthesis, catalyst regeneration, desulfurization in the steam
phase among many others (Balakotaiah and Luss, 1981).
Moreover, the mass transfer at the boundary of homogeneous
regions is crucial in chromatographic separations (DeVault,
1943; Reis et al., 1979; Raghavan and Ruthven, 1985; Dalvie
et al., 1990; Goto and McCoy, 2000). The importance of heat
and mass transfer in refrigerated storage and transpiration cool-
ing has been highlighted by many authors (Eckert and Drake,
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1972; Cho and Eckert, 1994; Bird et al., 2002; Verboven
et al., 2006) as well as their role on the transport of solutes in
aquifers (Pickens and Grisak, 1981; Brusseau et al., 1991). The
idea is to depart from pointwise (i.e., local) governing equa-
tions to arrive, by means of a suitable up-scaling procedure, to
macroscopic equations that describe transport phenomena for
physical scales larger than certain point characteristic scales.
The most common rigorous approaches are homogenization
(Sanchez-Palencia, 1980; Ene and Polisěvski, 1987) and vol-
ume averaging (Bear, 1972; Whitaker, 1999). While up-scaling
methods involve relatively simple procedures, the problem of
estimating effective (macroscopic) transport parameters must
be solved. In general, this estimation problem is addressed by
means of either ad hoc, heuristic methods or more rigorous
approaches that lead to closure problems. Solution of those
closure problems allows one to predict the corresponding
effective transport coefficients.

In many practical systems with diffusive mass transport,
the configuration is composed by a homogeneous fluid re-
gion and an adjacent porous medium saturated by the same
fluid (Beavers and Joseph, 1967). Examples of this class of
configurations are filtration processes, ground water pollution,
drying processes, separation membranes, transport in bio-
logical tissues, among many others. In general, the transport
properties at the fluid bulk are well understood and known. In
addition, many efforts have been devoted to the experimen-
tal (Hoogschagen, 1955; Currie, 1960; Kim et al., 1987) and
theoretical (Wakao and Smith, 1962; Weissberg, 1963; Ryan
et al., 1981; Quintard, 1993) determination of effective dif-
fusivities for homogeneous porous media. Within the volume
averaging framework, a periodic porous medium model for
a two-phase system was proposed to solve a boundary-value
problem (the so-called closure problem) that allows one to
numerically compute (Ryan et al., 1981; Quintard, 1993) or
analytically approximate (Ochoa-Tapia et al., 1986) the com-
ponents of effective coefficients. However, the description of
the transport phenomena around the fluid–porous medium
inter-region has received less attention due to the difficulty of
understanding the geometrical effects of the transition region
on the macroscopic coefficients. For instance, the difficulty of
using standard volume averaging results relies on the fact that
the length-scale constraints used to perform the up-scaling in
the porous medium bulk are not met due to drastic variations
of the porous medium properties (e.g., porosity) and transport
parameters (e.g., diffusivity) around the fluid–porous medium
inter-region. From a modeling standpoint, two approaches
have been considered to describe the inter-regional transport
phenomena:

• One-domain approach (ODA): The porous medium is con-
sidered as a continuum with effective transport coefficients.
The transition from the fluid to the porous medium is
achieved through a continuous transition of properties, such
as diffusivity and porosity. An advantage of the ODA is that
it avoids an explicit formulation of matching conditions at
the fluid–porous medium inter-region, which has allowed
many applications for extensive numerical simulations of

thermal natural convection and double diffusive convection
(see Goyeau et al., 2003 and references therein).

• Two-domain approach (TDA): Here, the porous medium and
the fluid are modeled according to the inherent properties
of each region. Contrary to the ODA, a model matching
problem to couple the transport in both homogeneous re-
gions needs to be addressed, resulting in the so-called jump
boundary conditions (Prat, 1989, 1990, 1992; Sahraoui and
Kaviany, 1993, 1994; Ochoa-Tapia and Whitaker, 1995,
1997; Valencia-Lopez et al., 2003). These jump conditions
often contain coefficients whose dependence of the local
geometry of the inter-region is missing. To this end, some
approximate approaches have been proposed (Goyeau et al.,
2003; Deng and Martinez, 2005; Min and Kim, 2005;
Chandesris and Jamet, 2006). In addition, recent develop-
ments have been presented to express the jump conditions,
for diffusive mass transfer with chemical reaction, in terms
of effective coefficients that are computed via the numeri-
cal solution of the corresponding closure problems (Wood
et al., 2000; Valdés-Parada et al., 2006).

While both the ODA and the TDA can be formulated from a
volume averaging framework, some methodological and com-
putational differences can be highlighted. The TDA recognizes
the drastic spatial variations at the fluid–porous medium inter-
region and poses the problem of describing “excess surface”
transport properties, which are used to match the behavior in the
fluid to the behavior in the plain porous medium (Ochoa-Tapia
and Whitaker, 1995). However, the nature of some excess sur-
face transport quantities is not easily understood and this may
limit the applicability of the TDA. Commonly, the resulting
jump condition is simplified by neglecting the contribution of
some of these transport terms at the dividing surface. On the
other hand, reported ODAs use ad hoc descriptions of the spatial
variations of geometric parameters. In particular, linear, sinu-
soidal and error function models, have been used to describe the
porosity variations, within a suitably defined boundary layer,
when moving from the fluid bulk to the porous medium bulk
(Goyeau et al., 2003). It should be obvious that effective trans-
port coefficients, like the effective diffusivity, change continu-
ously from one homogeneous region to another. However, such
changes are not necessarily trivial, and this can have a signif-
icant effect of the inter-region mass transport. Hence, detailed
studies of this issue are required for a better understanding of
the mass transport mechanisms around fluid–porous medium
inter-regions. Within the ODA modeling framework, this paper
focuses on the problem of determining the effective diffusivity
in the transition from a fluid to a homogeneous porous medium.
The aim of the paper is twofold:

1. To show that, as in the homogeneous porous medium
(Whitaker, 1999), boundary-value problems can be posed
to determine the effective diffusivity (for the case of a fluid-
porous medium inter-region) as closure problems derived
from volume averaging techniques. The solution of the
resulting closure problems provides the spatial variations
of an effective diffusivity coefficient in the inter-region.
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