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A Green’s function formulation for finite-differences schemes
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Abstract

The finite-differences (FD) method has been used with remarkable success in solving a wide range of problems in virtually all areas of
engineering. Our aim in this paper is to show how FD schemes can be derived from an integral formulation of boundary-value problems from
Green’s functions. For this purpose, we confine our attention to a simple second-order model representing diffusion and non-linear reaction
in a catalytic slab. The classical FD discretization is obtained by forcing the integral equation formulation of the boundary-value problem to
hold at the discretization points. Under the Green’s function formulation, Dirichlet boundary conditions are incorporated as in classical FD.
Interestingly, Neumann boundary conditions modify the discretization at the boundary node, and numerical results show that such modification
improves the performance of the FD method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite-differences (FD) method is a general technique
for constructing approximate solutions to boundary-value prob-
lems. Because of the generality and richness of the ideas under-
lying the method, it has been used with remarkable success in
solving a wide range of problems in virtually all areas of engi-
neering. For instance, recent work has shown that an accurate
numerical scheme for parabolic PDEs plays a central role to
obtain reduced-order (i.e., finite-dimensional) models for state
estimation and feedback control purposes (Christofides and
Daoutidis, 1997; Baker and Christofides, 2000; Christofides,
2001). General and customized FD methods are now stan-
dard for solving many applications in chemical engineering. A
plethora of results and studies on FD methods can be found
in the literature, including stability analysis, improved perfor-
mance and robustness. In general, derivation of FD schemes are
made from Taylor’s series expansions or Newton’s FD calculus.
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It seems, at least from an engineering perspective, that research
work should focus on refined applications and detailed grid or
mesh constructions. However, in this paper we will reveal a
novel link with another formulation from boundary-value prob-
lems; namely, integral equation formulations (IEF) obtained
from Green’s function approaches (Barton, 1989; Beck et al.,
1992; Melnikov, 1995; Duffy, 2001). In fact, in the chem-
ical engineering literature, IEF based on Green’s functions
have been proposed as an alternative to most traditional FD
schemes. Amundson and Schilson (1961) obtained the Green’s
function for isothermal linear reaction in a sphere, and solved
the resulting linear Fredholm integral equation via a succes-
sive approximation technique. Kesten (1969) applied Green’s
function analysis to obtain concentration profiles for ammo-
nia decomposition in a spherical catalytic pellet. Dixit and
Tavlarides (1982) were the first to use Newton iteration schemes
to solve non-linear Fredholm equations arising from reaction in
a sphere, and applied their results to the Fischer–Tropsch syn-
thesis. Subsequently, Mukkavilli et al. (1987a) presented and
solved numerically an IEF for reaction in a finite cylinder with
Dirichlet boundary conditions.

Numerical schemes based on IEF offer interesting imple-
mentation advantages, including exact incorporation of bound-
ary conditions and enhanced stability in the face of round-off
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error smoothing (Beck et al., 1992). On the other hand, FD
schemes are well studied and optimized computer codes
are available both publicly and commercially. On the one
hand, Green’s functions provide an important theoretical and
physical backup for IEF schemes. On the other hand, FD
methods have an intuitive flavor with theoretical backup from
well-studied function approximation theory. It is apparent that
FD and IEF are two different techniques to obtain approximate
solutions for boundary-value problems. The aim of this paper
is to show a link between the two techniques. Specifically, it
is shown that FD schemes can be obtained as a particular case
from IEF methods. The departing point for establishing such
connection is the description of the boundary-value problem
as a subdomain IEF. The classical FD scheme is obtained
by forcing the subdomain IEF to have zero residues at the
discretization points. Under the Green’s function formulation,
Dirichlet boundary conditions are incorporated as in classical
FD. Interestingly, mixed (i.e., Neumann plus Dirichlet) bound-
ary conditions modify the discretization at the boundary node,
and numerical results show that such modification improves
the performance of the FD method. Numerical results with
both linear and non-linear examples are used to illustrate our
findings.

It should be stressed that, since our aim in this paper is to
motivate the usage of Green’s functions to derive FD schemes,
we confine our attention to the simplest, most transparent ex-
ample: a one-dimensional, two-point boundary-value problem
characterized by a simple non-linear ordinary differential equa-
tion (ODE) of second-order, together with a pair of bound-
ary conditions. We shall refer to this example as our “model
problem”. Although the simplicity of the model problem, both
its mathematical structure and our approach in formulating its
IEF approximation are essentially the same in more complex
problems.

2. IEF of boundary-value problems

A brief description of Green’s functions and related concepts
will be described below. Consider the following class of linear
differential equations:

Lu(x) = ku(x), x ∈ D ⊂ Rn (1)

with suitable boundary conditions. Here, L represents a linear
differential operator of a given order. Let G(z, x) be an integral
kernel, called Green’s function, which will be defined later.
Then, repeated integration by parts over

∫
D

G(z, x)Lu(z) dz

yields (Barton, 1989; Melnikov, 1995)∫
D

G(z, x)Lu(z) dz = [. . .]|�D +
∫

D

u(z)L∗G(z, x) dz, (2)

where z is a dummy integration variable, [. . .]|�D are terms
evaluated at the boundary of D, and L∗ is the formal adjoint
differential operator associated with L. Computation of the
IEF requires the computation of the adjoint operator L∗. One
says that L is self-adjoint if L∗ = L. Notice from Eq. (1) that
Lu(x)=ku(x), which can be used in the left-hand side of Eq. (2)

to obtain∫
D

G(z, x)ku(z) dz = [. . .]|�D +
∫

D

u(z)L∗G(z, x) dz.

On the other hand, if one poses the differential problem on
G(z, x) as

L∗G(z, x) = �(z − x), (3)

where �(z − x) is the delta function, one obtains that∫
D

u(z)�(z − x) dz = u(x) (Greenberg, 1971). In this way,
Eq. (2) is reduced to the expression

∫
D

G(z, x)f (u(z)) dz =
[. . .]|�D + u(x), or

u(x) = −[. . .]|�D +
∫

D

G(z, x)ku(z) dz. (4)

This equation corresponds to a Fredholm IEF for the differ-
ential problem (1). Notice that Eq. (4) becomes a linear inte-
gral equation. The Green’s function G(z, x) is computed from
the linear differential equation (3) with suitable boundary con-
ditions. Notice that if L is self-adjoint, the Green’s function
problem is simply

LG(z, x) = �(z − x) (5)

and the boundary conditions depend directly from the original
system boundary conditions. It should be noticed that, in some
sense, the IEF via Green’s function can be seen as the inverse
of the linear differential operator L.

As commented in the introduction, numerical and analytical
procedures have been reported in the literature to deal with
the linear integral equation (4). However, the most interesting
practical problems are non-linear due to a source term; namely,

Lu(x) = f (x, u(x)), x ∈ D ⊂ Rn.

In this way, if f (z, u(z)) is a linear function, an explicit solution
for the boundary-value problem (1) can be obtained. However,
if f (z, u(z)) is a non-linear function, Eq. (4) is a semi-analytical
solution where inversion of operators is carried out only on the
linear differential operators. This leads to a non-linear integral
equation of the form

u(x) = −[. . .]|�D +
∫

D

G(z, x)f (z, u(z)) dz.

It is noticed that, in order to obtain an IEF for the boundary-
value problem (1), full linearity of the differential equation
is not required. Of course, if f (z, u(z)) is non-linear, the
semi-analytical formulation given by Eq. (4) should be com-
plemented by a suitable numerical scheme to obtain a finite-
dimensional (i.e., approximate) solution. As we will show in
the following sections, a formulation of Eq. (4) in subdomains
leads to standard FD schemes.

3. Statement of the problem

We begin by considering the problem of finding a func-
tion u = u(x), x ∈ [0, 1], which satisfies the following linear
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