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Abstract

The hydrodynamic interaction between two hard spheres tangentially translating in a power-law fluid is investigated. By considering the gap
between the two spheres being sufficiently small such that the Reynolds’ lubrication theory applies, an analytical equation to the pressure in
the gap is obtained using truncated Fourier series. To a good approximation, the pressure equation can be further simplified. The simplified
approximate equation over-predicts the pressure for shear thickening fluid (n > 1) but under-predicts the pressure for shear-thinning fluid
(n < 1). However, the errors in the predicted tangential force and moment are relatively small. In particular, for a Newtonian fluid, the accurate
solution and the simplified approximate solution degenerate to the asymptotic solution of Goldman et al. [1967. Slow viscous motion of a
sphere parallel to a plane wall-motion through a quiescent fluid. Chemical Engineering Science 22, 637–651.] and O’Neill and Stewartson
[1967. On the slow motion of a sphere parallel to a nearby plane wall. Journal of Fluid Mechanics 27, 705–724.]. Both solutions predict that for
shear thickening fluid (n > 1), the hydrodynamic force converged in the inner region of the gap between the two spheres and the contribution
from the outer region is sufficiently small. For shear thinning fluid (n < 1), the contribution from the outer region is also significant.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

For concentrated dispersions and suspensions, the hydro-
dynamic interaction between non-colloidal particles plays an
important role in their rheological behaviour, such as shear in-
duced particle migration and diffusion (Leighton and Acrivos,
1987; Cunca and Hinch, 1996). Some experimental studies
(e.g. Ohl and Gleissle, 1993) on concentrated suspensions have
shown that, when the inter-particle forces are dominated by
hydrodynamic effects, the flow behaviour can be described by
a shift factor for the reduced shear rate under constant shear
stress, with the shift factor being a function of the concentra-
tion and characteristics of the suspended particles. These stud-
ies gave clear evidence that the rheological behaviour scales
with the hydrodynamic force between suspended particles.
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Formulation of the constitutive relationship of the reduced shear
rate shift factor has been mostly relied on empirical equations
(e.g. Kamal and Mutel, 1985). A limiting factor for the devel-
opment of generalised rheological equations for concentrated
suspensions is due to the lack of analytical solutions to the
pair-wise hydrodynamic forces between solid particles in non-
Newtonian fluids.

Recent theoretical studies on the rheological behaviour of
multi-phase materials use computational simulations includ-
ing Stokesian Dynamics (Brady, 2001; Foss and Brady, 2000,
Schaink et al., 2000), Discrete Element Method (Lian et al.,
1998) and Lattice-Boltzmann (Ladd and Verberg, 2001; Lee
and Ladd, 2002). With the Stokesian Dynamics and Dis-
crete Element simulations, it is necessary to implement more
physically realistic inter-particle hydrodynamic forces. Most
computer simulations on the rheological properties of col-
loidal and concentrated suspensions used relatively simple
hard sphere interaction model (e.g. Bergenholtz et al., 2002).
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This clearly limits wider applications of the computational
method.

The hydrodynamic interaction between two near-touching
spherical particles dispersed in a fluid can be resolved into three
components of normal, tangential and spinning. The normal
component of the relative approach between two near-touching
spheres along their common axis is often referred to as squeeze
flow. The problem has been studied theoretically by many re-
searchers (Adams and Edmondson, 1987; Rodin, 1996, Xu
et al., 2001). A closed-form solution of the viscous force aris-
ing from the squeeze flow of a power-law fluid between two
rigid spheres was recently derived by Lian et al. (2001). There
have been relatively fewer studies on the hydrodynamic inter-
action between two tangentially translating hard spheres. The
problem is asymmetrical. O’Neill and Stewartson (1967) stud-
ied the problem of a sphere translating parallel to a plane wall
bounded by a Newtonian fluid, and obtained a numerical so-
lution. Goldman et al. (1967) studied the same problem and
presented an asymptotic solution. However, their solution to
the pressure distribution exhibits singularity at the centreline
of the inner gap. This paper presents an analytical study on the
hydrodynamic interaction between two tangentially translating
spheres in a power-law fluid. The gap between the two spheres
is considered to be sufficiently small such that the lubrication
theory applies.

The analytical solution is derived with the pressure distri-
bution in the gap represented by truncated Fourier series. The
Perturbation method similar to Goldman et al. (1967) is used.
Integration of the pressure allows the closed-form solution to
the corresponding tangential traction and moment obtained.

Tangential interaction between two near touching spheres in
a complex fluid is also of relevance to a number of industrial
and process engineering problems including thin-film lubrica-
tion (Luo et al., 1996), single and double particle microrhe-
ology (Levine and Lubensky, 2000), sedimentation (Gheissary
and van den Brule, 1996; Schmeeckle et al., 2001) and struc-
ture formation in suspensions (Scirocco et al., 2004). In those
applications, the hydrodynamic interaction between suspended
particles plays an important role in determining the complex dy-
namics including particle chaining, inter-particle collision and
aggregation.

2. Governing equations

Consider a rigid sphere of radius R1 translating parallel to
another rigid sphere of radius R2 with a relative velocity, U,
in x-direction, shown in Fig. 1(a). The gap between the two
spheres is sufficiently small and the lubrication theory is con-
sidered to apply. The problem can be extended to the problem
of a sphere translating parallel to a wall when the radius of the
one sphere is set to infinity. For convenience, a cylindrical co-
ordinate system (r, �, z) is chosen. The minimum gap at the
centreline between the two spheres is s0 and the fluid in the
gap is considered as a power-law fluid. The general form of
the constitutive relationship for a power-law fluid is given as

follows:

�ij = ��̇ij = K �̇n−1�̇ij with �̇ =
√
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where �ij is the shear stress tensor (i, j =1, 2 for 2D and 1, 2, 3
for 3D), � = K �̇n−1 is the apparent viscosity, K is the flow
consistency, n is the flow index, and �̇ is related to the second
invariant of strain rate tensor �̇ij = 2�̇ij . The above constitutive
relationship of power-law applies to both shear thinning (n < 1)

and shear thickening (n > 1) fluid. In particular, for n = 1, we
have the Newtonian fluid.

We consider the gap between the two spheres be sufficiently
small such that the lubrication assumption applies. The momen-
tum equation of the interstitial fluid between the two spheres
is reduced to the following form:
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where �rz and ��z are the stress components, respectively and
p is the fluid pressure with p = p(r, �).

The continuity equation of the fluid in the gap satisfies the
following relationship:
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where ur, u� and uz are the velocity components.
Generally, for flow in 2D and 3D flow problems, standard

tensor notation is used. The constitutive relationship of Eq. (1)
is generally expressed in terms of the second invariant of the
strain rate tensor. For the tangential translation between two
spheres, the leading terms of the shear strain rate are �̇rz =
�ur/�z and �̇�z = �u�/�z. The second invariant of the strain
rate tensor, I2, can be approximated as

I2 ≈ 1
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Since the gap is considered to be sufficiently small, i.e., s0 →
O(1), the two near surfaces S1 and S2 can be approximated by

S1 : z = z1(r) = s0 + r2

2R1
,

S2 : z = z2(r) = − r2

2R2
. (5)

It follows that the separation distance between the two near
surfaces of the two spheres can be derived as follows:

s(r) = z1(r) − z2(r) = s0 + r2

2R∗ , (6)
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