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Abstract

The method of volume averaging is used to derive the diffusive mass transfer boundary conditions for transport between the micro-pores
(�-region) and the fluid in the macro-pores (�-region) in a catalyst pellet. In this configuration, the mass jump boundary condition between
the homogeneous regions takes the form

−n�� · (D�∇〈cA�〉��) + n�� · (��D� · ∇〈cA�〉��) = Keff 〈cA�〉��,

where Keff is the effective reaction rate coefficient at the inter-region. In this study, a closure is derived in order to predict this average jump
coefficient as a function of the microstructure of the porous layer and the Thiele modulus. The jump coefficient predicted for three inter-region
structures is presented.
� 2005 Published by Elsevier Ltd.
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1. Introduction

The derivation of macroscopic conservation equations for
transport phenomena in multiphase systems has been the sub-
ject of intense research activity in the last decades. Usually, av-
erage equations are obtained using up-scaling procedures such
as homogenization (Sanchez-Palencia, 1986) or the method of
volume averaging (Whitaker, 1999). In many practical systems
the configuration is composed by an homogeneous fluid re-
gion and an adjacent porous layer saturated by the same fluid
(Beavers and Joseph, 1967). In that case, one of the most chal-
lenging problems lies in the determination of appropriate large-
scale boundary conditions at the fluid-porous inter-region. In-
deed, in this transition region, the length scale constraints used
to perform the up-scaling in the homogeneous porous layer
are not satisfied due to significant spatial variations of the
porous structure. This difficulty has been addressed by deriving
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jump boundary conditions at the fluid-porous dividing surface
for momentum (Ochoa-Tapia and Whitaker, 1995a,b, 1998b),
heat transfer (Prat, 1989, 1990, 1992; Sahraoui and Kaviany,
1993, 1994; Ochoa-Tapia and Whitaker, 1997, 1998a) or mass
transport (Valencia-López et al., 2003). However, these jump
conditions involve coefficients whose physical meaning is not
well understood and up to now they have been considered
as adjustable parameters. Recently, Goyeau et al. (2003) have
described the inter-region as a non-homogeneous interfacial
porous layer and derived an explicit expression for the stress
jump coefficient involved in the momentum transport. However,
this latter methodology includes the knowledge of the spatial
variation of the effective properties in the inter-region.

Actually, in the context of the volume averaging method,
the exact determination of such a coefficient taking into ac-
count the microstructure of the non-homogeneous porous layer
needs the derivation of an associated closure problem. Such
type of analysis has been presented by Wood et al. (2000) to
obtain an effective reaction rate coefficient at non-uniform cat-
alytic surfaces. In this paper this analysis is extended to more
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Fig. 1. Scales of interest in a porous catalyst.

complicated systems, in particular we will deal with the
transport between a micro-pore and a fluid in a macro-pore
(Fig. 1). The objective is to derive the appropriate mass flux
boundary conditions (including the jump coefficients) for this
system. The methodology here outlined may also be applied
to other situations, for example, the analysis of the stress jump
condition in the problem of Beavers and Joseph (1967) or the
mass transfer in double emulsions, in fact the case under study
can be regarded as a special case of the double emulsion sys-
tem. In future works we will analyze these and other transport
processes.

Indeed, the problem under consideration concerns the mass
transport in a packed bed reactor with micro–macro porous
pellets. In order to model a fixed bed or other type of reactor,
it is necessary to define boundary conditions for the transport
between the catalytic pellets and the fluid flowing through.
However, to derive them accurately, the analysis must start with
a boundary value problem governing the transport between the
micro-porous region and the fluid in the macro-pores (see Scale
I in Fig. 1). At this scale interfacial boundary conditions have
not been properly obtained.

2. Volume averaging

The point and average jump conditions for Scale III were
developed by Wood et al. (2000) assuming that the reaction
takes place only at the �.� interface where � and � represent
the solid and fluid phases, respectively. This is the initial state-
ment for the derivation presented in this paper. Under these cir-
cumstances, the average concentration conservation equation
and interfacial boundary condition at Scale III are (Wood et al.,
2000)

�〈cA�〉�III
�t

= ∇ · (D�∇〈cA�〉�III) in the �-phase, (1)

Fig. 2. Volume averaging at Scale II.

−n�� · D�∇〈cA�〉�III = k〈cA�〉�III at the �.� interface, (2)

where n�� is unit normal vector directed from the �-phase to-
wards the �-phase. In order to simplify the nomenclature the
above equations are now written as

�cA�

�t
= ∇ · (D�∇cA�) in the �-phase, (3)

−n�� · D�∇cA� = kcA� at the �.� interface. (4)

The average equations and boundary conditions at Scale II are
obtained using the averaging volume represented in Fig. 2.

As shown in this figure, can be located in the homogeneous
parts of the system: micro-pore �-region or fluid in the macro-
pore �-region. It can also be located at the �–� inter-region
where rapid spatial variations of the geometric properties are
present.

In order to provide useful average quantities the characteristic
length scales of the system must satisfy

l� � r0 � L, (5)

where l� and L are the length scales associated to the micro-
and macro-pores, respectively, and r0 denotes the size of the
averaging volume (Fig. 2). According to Whitaker (1999), the
superficial average of a quantity �� defined in the �-phase is

〈��〉 = 1
∫

V�(x)

�� dV (6)

while the intrinsic average is given by

〈��〉� = 1

V�(x)

∫
V�(x)

�� dV . (7)

These two averages are related as follows:

〈��〉 = ��(x)〈��〉�. (8)
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