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a b s t r a c t

We demonstrate applicability of the proposed extended cluster expansion (CE) technique, enabling
complete representation of strain effects on alloy configurational energy on single and multiple lattices.
Complete and orthonormal basis function to describe configurational energy is constructed in terms of
spin variable u on virtual lattice and s on base lattice, where the former specifies the strain of a given cell
from the base cell. We estimate formation energy of superlattice composed of alternate stacking of or-
dered structures for CueAu binary alloys where the strain effects should play significant role. The pro-
posed CE is shown to precisely estimate the strain effects on total energy for alloys, which cannot be
essentially handled by the current CE.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In order to effectively design suitable alloy materials in terms of
narrowing down the controlling parameters, knowing the alloy
configurational thermodynamics and the relationship between the
property and structure is a fundamental prerequisite since struc-
tures of alloys, including atomic arrangements and compositions,
should significantly affect their physical properties. However,
consideration of a tremendous number of atomic arrangements
should be required to quantitatively predict alloy thermodynamics
or to capture characteristic properties in configuration space, which
is typically far beyond the practical limitation of density functional
theory (DFT) calculations. Therefore, in order to reduce the
computational cost of DFT, alternative approaches have been pro-
posed, which can be combined with DFT calculation. One of the
most promising and well-established approaches is the cluster
expansion (CE) technique [1], which provides an accurate predic-
tion of configuration-dependent scalar properties including inter-
nal energy and elastic constants. There has been wide applications
for CE combined with DFT to variety of systems: Construction of
phase diagrams for binary and multicomponent alloys, surface
ordering and segregation with existence of molecular adsorption,
ground-state atomic configuration for alloy nanoparticles, effects of
lattice vibration and of pressure on phase stability, and the
comprehensive search for superhard materials [2e7]. The CE has

been modified in various manners for systems requiring specific
treatments in terms of configuration spaces: formation energy for
long-period superlattices is effectively handled by mixed-space CE
[8], and tensor-valued properties, such as elasticity and dielectric
constants, can be handled by tensorial CE [9]. Thus, CE has become a
powerful tool to theoretically optimize alloy materials in terms of
atomic arrangements [10].

However, in order to model more general configurational
energetics, the current CE still has essential problem: strain ef-
fects on total energy, DES, cannot be handled by the CE. Laks
et al. first pointed out this problem [8], and they propose mixed-
space CE where DES is treated as a correction term of CE in terms
of composition. Their proposed approach of DES is however
confined to a given single lattice where a CE Hamiltonian is
constructed, since CE Hamiltonian itself depends on a single
given lattice. Recently, the author developed an extended CE,
variable-lattice CE (VLCE) [11e13] that can handle multiple lat-
tices in a single Hamiltonian and then we extended VLCE,
continuous-spin basis VLCE (CS-VLCE) [14] which can handle DES
not as correction term: DES can be completely described in terms
of complete basis functions. CS-VLCE can also treat DES on single
as well as multiple lattices, which cannot be essentially achieved
by the current CE. In the present study, we demonstrate an
applicability of CS-VLCE to prediction of superlattice formation
energies consisting of ordered structures, where DES should play
significant role. In the following sections, we first briefly describe
construction of CE, VLCE and CE-VLCE Hamiltonian for single and
multiple lattices, and then, we show the application of CS-VLCE
to CueAu binary alloys.

* Corresponding author.
E-mail address: yuge.koretaka.4r@kyoto-u.ac.jp (K. Yuge).

Contents lists available at ScienceDirect

Intermetallics

journal homepage: www.elsevier .com/locate/ intermet

0966-9795/$ e see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.intermet.2013.08.010

Intermetallics 44 (2014) 60e63

Delta:1_given name
Delta:1_surname
mailto:yuge.koretaka.4r@kyoto-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.intermet.2013.08.010&domain=pdf
www.sciencedirect.com/science/journal/09669795
http://www.elsevier.com/locate/intermet
http://dx.doi.org/10.1016/j.intermet.2013.08.010
http://dx.doi.org/10.1016/j.intermet.2013.08.010
http://dx.doi.org/10.1016/j.intermet.2013.08.010


2. Methodology

We first briefly introduce construction of CE Hamiltonian. Let us
consider the system where occupation of lattice point i in a given
lattice having N lattice points is described by Ising-like pseudospin
variable, si. Then an N-dimensional vector s! ¼ fs1; s2;/;sNg can
uniquely specify any atomic arrangement on the lattice points.
Under this definition, any configuration property f (e.g., internal
energy) depending on the atomic arrangement can be expressed by
the complete orthonormal basis functions of the atomic arrange-
ment s!, which are called cluster functions J:

f ð s!Þ ¼
X
a;ðMÞ

D
f ð s!Þ

���JðMÞ
a ð s!Þ

E
JðMÞ

a ð s!Þ; (1)

where hji represents the inner product in s space and called the
effective cluster interaction (ECI) on cluster a composed of the
lattice points and (M) denotes basis functions. Complete and
orthonormal basis at each lattice point, r, can form the basis
function J by applying the following Gram-Schmidt technique to
linearly independent polynomial set {1,s,s2,.,sR�1} for an R-
component system:

rmðsiÞ ¼ bmðsiÞ
hbmðsiÞjbmðsiÞi1=2

bmðsiÞ ¼ smi � Pm�1

j¼0

D
rjðsiÞ

���smi
E
rjðsiÞ ðms0Þ

bmðsiÞ ¼ 1 ðm ¼ 0Þ;

(2)

where m takes integer values from 0 to R�1. Complete and ortho-
normal basis functions for whole lattice points, J, can therefore be
obtained by taking tensor product of vector space for each lattice
points. It is now clear that the f on different lattices cannot be
handled by conventional CE with a single formalism, since spin
variable si itself does not contain any information about the posi-
tion of lattice point i.

In VLCE, multiple lattices are linked via a combination of two
lattices of “base” and “virtual” lattices in order to simultaneously
treat atomic arrangements on multiple lattices. The occupation of
elements on a certain given lattice is specified by the base lattice,
which is similar to conventional CE. The position of individual
lattice points or a set of lattice points measured from the base
lattice is specified by the virtual lattice. Therefore, the base lattice is
a real lattice, while the virtual lattice is merely an abstract lattice
which does not include a concrete concept of symmetry. A standard
orthonormalization technique used in CE described in Eq. (2) can
form the basis function for base and virtual lattices, and taking the
tensor product of vector space for base and virtual lattices leads to a
general VLCE expression for property f: [11]

f ð s!; s!Þ ¼ P
a;b

P
ðM;LÞ

FðM;LÞ
a;b

ð s!; s!ÞV ðM;LÞ
a;b

FðM;LÞ
a;b

ð s!; s!Þ ¼ Q
i˛a

d˛ðMÞ

fdðsiÞ
Q
p˛b
d0˛ðLÞ

fd0
�
sp
�
; (3)

where F is an expansion function, and is called a cluster function. a
and b represent clusters consisting of lattice points i and p on base
and virtual lattices, and (M) and (L) specify the combination of basis
function index d and d

0
on base and virtual lattices, respectively. s

and s are spin variables on base and virtual lattices, and individually
have values to specify the occupation of elements or the position of
lattice points, which are similar to spin variables in the Ising model.

Next, we see the essential problem of CE for treating strain ef-
fects on total energy shown by Laks et al. [8] We take an example of
one-dimensional long-period superlattice along a certain direction,
which is composed of alternating elements A and B with repeat
period p. Under the condition of different lattice parameters of A
and B, the formation energy of the superlattices in terms of pure A
and B should have finite and positive value when p goes to infinity
due to the strain energy coming from lattice size mismatch. How-
ever, at p/N, they show that the CE formation energy with finite
number of basis function should always be zero. The reason is: CE
interprets a certain A atom far from the interface between A and B
as A atom in bulk A with lattice parameter same as pure A, since
finite number of CE basis connects the A atom with other A atoms.
The similar interpretation holds for B atoms. The superlattice at
p / N is therefore interpreted as a sum of non-interacting bulk A
and bulk B, which leads to zero formation energy. This problem not
only occurs for superlattice consisting of pure A and B, but also for
that of ordered structures with different lattice parameters. Thus,
the CE completely misses the strain effects for a long-period
superlattice. The same problem also occurs in VLCE, since VLCE
basis functions defined on a single lattice have essentially contain
the same amount of information about structure as those in CE for
the same single lattice [11]. In order to avoid this problem, the
strain effect on total energy, DES, is treated as correction term in the
mixed-space CE (MSCE): [8]

Eð s!Þ ¼
X
a;ðMÞ

V ðMÞ
a JðMÞ

a ð s!Þ þ
X
k

DECS
4xð1� xÞjSðk; s

!Þj2; (4)

where the first term on the right-hand side corresponds to the
current CE expression, and the second is the correction term for the
strain effect, DES. DECS is called the constituent strain energy ob-
tained by taking the composition average of strain energy required
to deform bulk A and B biaxially to the plane parallel to the inter-
face, x is the composition of the system. S is defined as

sjð s!Þ ¼
X
k

Sðk; s!Þexp��ik$Rj
�
; (5)

where sjð s!Þ denotes spin variable on lattice point j in configuration
s!, Rj denote position of lattice point j, and summation over k runs
over the first Brillouin zone. The second term is derived by per-
forming a reciprocal space cluster expansion to obtain constituent
strain energy in powers of x at the first order. The important points
are (i) expression of energy, Eð s!Þ, should not be complete in
configuration space since the second term in right-hand side of Eq.
(4) is an approximation in terms of x, and (ii) application of the
correction term for strain effects is confined to a single given lattice
where the CE Hamiltonian is constructed, since the second term is
derived from conventional CE. In order to overcome the problems
of (i) and (ii), further modification should therefore be required so
that the strain effect can be included in a complete basis functions
on multiple lattices, which will be achieved by the CS-VLCE in the
followings.

Since the spin variables of CE or VLCE merely have information
about atomic arrangements or displacements from the base lattice
in terms of internal position of the defined cell, they cannot
essentially handle DES. Therefore, our strategy to include DES is the
use of virtual lattice which describes deformation of cell from an
certain defined cell (hereafter referred to as the base cell). The
concept of the base cell and corresponding definition of the virtual
lattice is schematically illustrated for a 2-dimensional lattice in
Fig. 1. In Fig. 1, introduced spin variable u on corresponding virtual
lattice points of i and j, can completely describe any deformation of
the cell from the base cell, which is a similar definition of spin
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