Intermetallics 36 (2013) 118-126

Contents lists available at SciVerse ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

Phase equilibria and crystal structures in the system Ce-Zn-Si

ABSTRACT

Z. Malik^{a,1}, A. Grytsiv^a, P. Rogl^{a,*}, G. Giester^b

^a Department of Physical Chemistry, University of Vienna, Waehringerstrasse 42, A-1090 Vienna, Austria
^b Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

ARTICLE INFO

_____ Pha

Article history: Received 14 September 2012 Received in revised form 7 December 2012 Accepted 27 December 2012 Available online 13 February 2013

Keywords: A. Rare-earth intermetallics A. Silicides B. Crystallography E. Phase diagram F. Electron microscopy, scanning Phase relations in the system Ce–Zn–Si have been determined for the isothermal section at 800 °C using electron microprobe analysis and X-ray powder diffraction. Phase equilibria are characterized by extended solid solutions along the section CeSi₂–CeZn₂, which form a structurally related sequence of structure types: Ce(Zn_xSi_{1-x})₂ (α ThSi₂-type, 0 $\le x \le 0.32$), τ_2 -Ce(Zn_xSi_{1-x})₂ (AlB₂-type, 0.36 $\le x \le 0.76$) and Ce(Zn_{1-x}Si_x)₂ (CeCu₂-type, 0 $\le x \le 0.18$). Silicon stabilizes the ternary compound τ_1 -Ce₇Zn₂₁(Zn_{1-x}Si_x)₂ (0.28 $\le x \le 0.98$) for which the crystal structure was derived from X-ray diffraction data for a single crystal of Ce₇Zn₂₁(Zn_{1-x}Si_x)₂ (x = 0.28; unique structure type, Pbam; a = 1.55722(3) nm, b = 1.71942(3) nm, c = 0.44772(1) nm; $R_F = 0.029$). The structure of Ce₇Zn₂₁(Zn_{1-x}Si_x)₂ can be considered as an arrangement of slightly distorted building blocks of Cu₃Au-type (Zn[Ce4Zn₈]) and BaAl₄-type (Ce [Ce₂Zn₁₀M₄] and Ce[Ce₂Zn₁₃M₂]), arranged in form of a zig-zag string of face-sharing units...Cu₃Au –BaAl₄–BaAl₄–Gu₃Au... running parallel to the *b*-axis. Structural analyses proved isotypism for homologous La₇Zn₂₁(Zn_{1-x}Si_x)₂ (x = 0.27), Ce₇Zn₂₁(Zn_{1-x}Si_x)₂, (x = 0.56, AlB₂-type, P6/*mmm*, a = 0.42775(4) nm; c = 0.42832(4) nm; X-ray powder data). The structure types of the ternary compounds τ_3 -Ce(Zn_xSi_{1-x})₂, 0.17 $\le x < 0.23$, and τ_4 -Ce₄₀Zn₃₇Si₂₃ (in at.%) are still unknown.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Zinc-based alloys with rare-earth metals are used in several engineering applications and are employed to replace cast iron because of similar properties and higher machinability [1]. Rare earths (RE) improve the mechanical performance, tensile strength, hardness and also the corrosion resistance by removing impurities from the grain boundaries of their alloys with zinc [2]. Silicides may find applications as contact materials or in optoelectronic devices or simply as grain refiners [3]. As far as high strength lightweight alloys for automotive applications are concerned [4], the Ce-Zn system is an important part of the multinary Mg-based alloy system Mg-Zn-Mn-RE-(Si). Besides the compound CeZnSi, which has been reported [5] to be paramagnetic within the temperature range of 77–300 K, no phase diagram has yet been established for the system Ce-Zn-Si. Therefore the present work intends to provide detailed information on phase equilibria and crystal structures in the Ce-Zn-Si system and some attempts to explore the homologous system La-Zn-Si.

2. Experimental

Samples were prepared from cerium ingots (Alfa Aesar, purity >99.9 mass%), lanthanum ingots (Auer Remy, 99.9 mass%) zinc granules (Alfa Aesar, >99.9 mass%), Ni foil (Alfa Aesar, >99.8 mass%) and silicon pieces (Alfa Aesar, 6 N). Zinc drops were purified in an evacuated quartz tube by heating them at ~750 °C, below the boiling point of Zn (907 °C). Cerium and lanthanum ingots were mechanically surface cleaned before use.

Samples for ternary phase analysis were prepared from intimate blends of powders of arc melted master alloys $CeSi_x$ or $LaSi_x$ (various x; powdered under cyclohexane) and fine Zn-filings in proper compositional ratios. These blends were cold compacted in a steel die without lubricants, vacuum-sealed in quartz tubes, heated from 420 °C to 800 °C at the rate of 1 °C/min and then annealed at this temperature for 4 days. After water quenching the samples were re-powderized under cyclohexane in order to ensure homogeneity. The samples were once again cold compacted and annealed at 800 °C for 7 days and subsequently water quenched.

X-ray powder diffraction data were collected from each alloy in as cast and annealed state employing a Guinier-Huber image plate system with monochromatic CuK_{α 1} radiation (8°<2 θ < 100°).

^{*} Corresponding author.

E-mail address: peter.franz.rogl@univie.ac.at (P. Rogl).

¹ Present address: Department of Chemistry, University of Sargodha, Pakistan.

^{0966-9795/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.intermet.2012.12.019

119

Table 1	
Crystallographic data of unary and binary boundary solid ph	nases of the system Ce—Zn—Si ^a .

Phase, temperature range (°C)	Space group, prototype	Lattice parameters (nm)			Comments	
		a	b	С		
(δCe)	Im 3 m	0.412	_	_	[11]	
798–700 [11]	W		_	_	_	
(γCe)	Fm3m	0.51610	-	-	[11]	
26[11]</td <td>Cu DG /mmc</td> <td>0.2665</td> <td>-</td> <td>-</td> <td>[11]</td>	Cu DG /mmc	0.2665	-	-	[11]	
(211)	Po ₃ /mmc	0.2665	_	0.4947		
(Si)	Fd3m	0 543110	_	_	[22]	
<1414 °C	C (Diamond)	010 10 110	_	_	_	
CeSi ₂	Imma	0.4189(1)	_	0.4109(1)	Ce _{37.4} Si _{62.6} ^b [13]	
<1725 °C [13]	α GdSi ₂		-			
CeSi ₂	I4 ₁ /amd	0.4192(1)	-	1.3913(5)	Ce _{33.3} Si _{66.7} ^b [13]	
~1575 °C [13]	αThSi ₂	-	-	-	0.000 (1771) 1.1	
$Ce(Zn_xSi_{1-x})_2$	Dama	0.4201(1)		1.4312(7)	$x_{\text{max}} = 0.32^{\circ}$ [1his work]	
<1630 °C [13]	FeB	0.8298(4)	_	0.5901(2)	Ce _{49.9} 51 _{50.1} [15]	
Ce ₅ Si ₄	P41212	0.7936(1)	_	1.5029(5)	$Ce_{556}Si_{444}^{b}[13]$	
<1500 °C [13]	Zr ₅ Si ₄		_			
Ce ₃ Si ₂	P4/mbm	0.7780(6)	-	0.4367(6)	[13]	
<1335 °C [13]	U ₃ Si ₂		-			
Ce ₅ Si ₃	I4/mcm	0.7878(4)	-	1.067(1)	[13]	
<1260 °C [13]	Cr ₅ B ₃	0.44025	-	0.20517		
Ce_2Sl_{3-x}	Cmcm V P	0.44035	2.48389	0.39517	x = 0.3 [14]	
Cesi-	V ₂ D ₃ Immm	0 37774839	-0.60189(4)	- 0.92979(6)	[15]	
<827 °C	LaGe₅	0.57774055	0.00105(4)	0.52575(0)	High pressure phase: 10 GPa	
Ce ₂ Si ₇	Cmmm	0.70893(7)	0.99644(7)	0.44868(4)	[15]	
<1127 °C	Ce ₂ Si ₇	. ,		.,	High pressure phase; 10 GPa	
CeZn	$Pm\overline{3}m$	0.37059(2)	-	-	[12]	
<825 [11]	CsCl					
CeZn ₂	Imma	0.46393(8)	0.7544(1)	0.7506(1)	[12]	
<875 [11]	CeCu ₂	0.4592(2)	0.75(9/5)	0.750(5)	··· 0.10 ^C [This work]	
$Ce(ZII_{1-x}SI_x)_2$	Cmcm	0.4583(3)	0.7568(5) 1.0452(1)	0.759(5)	$x_{\text{max}} = 0.18$ [This work]	
<820 [11]	CeZn ₂	0.40524(5)	1.0432(1)	0.00337(0)	[12]	
Ce_3Zn_{11}	Immm	0.45242(2)	0.88942(3)	1.34754(4)	SC [12]	
<840 [11]	La ₃ Al ₁₁					
Ce ₁₃ Zn ₅₈	P6 ₃ /mmc	1.4638(1)	-	1.4158(1)	[23]	
<870 [11]	Gd ₁₃ Zn ₅₈	1.4616(1)	-	1.4173(1)	[12]	
CeZn ₅	P6/mmm	0.54082(1)	-	0.42798(1)	[12]	
< 005 [11] Ce7n-	CaCu ₅				$0.09 \le y \le 0.29$ [24]	
CCEn _{5+x}		0.54163(5)	_	0.42647(5)	x = 0.09	
		0.54069	_	0.42757	x = 0.29	
Ce ₃ Zn ₂₂	I4 ₁ /amd	0.897(1)	_	2.133(5)	[25]	
<960 [11]	Ce ₃ Zn ₂₂	0.8936(2)	-	2.1380(5)	SC [12]	
$\beta Ce_2 Zn_{17}$	R3m	0.90916(4)	-	1.32861(1)	[12]	
< 980 [11]	Th_2Zn_{17}		-			
$980 - \sim 750 [12]$	DG /mmc	0.0088(4)		0.0000000	[26]	
a Ce ₂ 2II ₁₇	TheNitz	0.9088(4)	-	0.0000(5)	[20]	
$\alpha Ce_1 = 7n_5$	$P6_2/mmc$	0 52424(2)	_	0.44274(1)	x = 0.33 [12]	
$< \sim 750 [12]$	TbCu ₇			01112/1(1)		
CeZn ₁₁	I4 ₁ /amd	1.06630(1)		0.686644(7)	[12]	
<795 [11]	BaCd ₁₁					
τ_1 -Ce ₇ Zn ₂₁ (Zn _{1-x} Si _x) ₂	Pbam	1.55722(3)	1.71942(3)	0.44772(1)	x = 0.28 [This work] SC	
	$Ce_7Zn_{21}(Zn_{1-x}Si_x)_2$	-			$(0.28 \le x \le 0.98)$ [This work]	
τ_2 -ce($Zn_{1-x}Sl_x)_2$	Pb/mmm	0.4223	_	0.4238	X = 0.50 [5]	
	AID2	0.41027(2)	_	0.42/4/(2)	[11115 WOIK] SU dl $X = 0.50$ (0.36 < y < 0.76) [This work]	
		0.41315(7)	_	0.4295(2)	x = 0.36 [This work]	
		0.4421(2)		0.38960(3)	x = 0.76 [This work]	
τ_3 -Ce(Zn _x Si _{1-x})	Unknown	_ ``	_	_ ``	$(0.17 \le x \le 0.23)$	
τ_4 -Ce ₄₀ Zn ₃₇ Si ₂₃	Unknown	-	-	-	at.%	

^a For the Ce–Zn compounds only data from our recent investigation [12] are listed essentially consistent with the literature data [27]. ^b Composition reported [13]. ^c x_{max} – maximum solubility at 800 °C [This work].

Download English Version:

https://daneshyari.com/en/article/1600265

Download Persian Version:

https://daneshyari.com/article/1600265

Daneshyari.com