Intermetallics 25 (2012) 66-69

Contents lists available at SciVerse ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

Electrochemical synthesis of Nb_5Si_3 intermetallic compound from molten calcium chloride salt

Wen Chen, Shubo Wang, Jianbang Ge, Shuqiang Jiao*, Hongmin Zhu

State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijng, School of Metallurgical and Ecological Engineering, No 30 Xueyuan Road, Beijing 100083, PR China

ARTICLE INFO

Article history: Received 21 August 2011 Received in revised form 15 February 2012 Accepted 17 February 2012 Available online 15 March 2012

Keywords:

A. Intermetallics, miscellaneous F. Electrochemical characterization G. Aero-engine components

ABSTRACT

 Nb_5Si_3 intermetallic compound was directly synthesized via an electrodeoxidation process from molten $CaCl_2$ electrolyte. The reaction mechanism was studied by performing a series of quenching investigations, which suggested that the formation of a series of sub oxides and compounds containing calcium and oxygen preceded the formation of Nb_5Si_3 . While Nb_2O_5 was gradually reduced to its sub oxides, $(Nb_2O_5/NbO_2/NbO/Nb)$, SiO_2 , on the other hand, got directly reduced to silicon and reacted with Nb to form Nb_5Si_3 .

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nb-Si based ultrahigh temperature alloys possess higher melting points, relatively lower densities and attractive high temperature strength comparable with Ni or Al based superalloys [1]. In the Nb–Si based alloys, Nb₅Si₃ is labeled as one of the most promising new generation high temperature materials, because of its excellent performance in high-temperature resistance furnace, low density (7.16 g/cm³) and outstanding specific mechanical properties at elevated temperatures [2]. Generally, this alloy is prepared through a melting technique in an arc melting furnace. Multiple re-melts are required to get a homogeneous alloy phase. Besides, the loss of silicon through volatilization is inevitable in the high-temperature reaction condition. Alloys have also been synthesized by powder metallurgy (PM) techniques, such as selfpropagating high-temperature synthesis (SHS) [3–5], hot isostatic pressing (HIP) [6], element powder metallurgy (EPM) [7], and prealloy powder metallurgy [8]. However, these processes offer very little scope for commercial exploitation on account of overall high manufacturing cost.

Recently, a novel electrodeoxidation technique has been developed for fabricating high temperature metals and their alloys. This technique involves removal of the oxygen from

0966-9795/\$ - see front matter @ 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.intermet.2012.02.013

oxides(s), when the latter is cathodically polarized in a pool of molten calcium chloride based electrolyte and, thereby, help transform the oxide to its constituent metal(s)/alloy(s) [9]. A series of metals and alloys have been directly produced from their oxides via electrodeoxidation in molten CaCl₂ [10–18]. The main advantages of the electrodeoxidation process compared with other extractive metallurgical processes include: its simplicity; low energy and labor requirements; and ability to directly reduce a combination of different metal-oxides to form alloys. In light of the successful applications of electrodeoxidation process, this study under taken to directly produce Nb₅Si₃ intermetallic compound via electrodeoxidation in molten CaCl₂.

2. Experimental

In order to prepare the pellet, commercially available Nb₂O₅(\geq 99.99%, particle size: 100 µm) and SiO₂(\geq 99.5%, particle size: 50 ± 5 nm) powders were precisely weighted out in a molar ratio of Nb₂O₅: SiO₂ = 5:6 and well mixed with a mortar and pestle. The mixed powder was uniaxially pressed into a pre-formed pellet (0.01 m in diameter and 0.005 m in height), which was then sintered in a muffle furnace at 1100 °C for 4 h. The operation ensured that the pellets had an adequate mechanical strength during subsequent electrodeoxidation step [17–19]. A well prepared electrolyte is essential to gain a desired product. 200 g CaCl₂(\geq 96.0%) was weighed out and placed in a well sealed vacuum drying oven (200 °C and 0.02–0.09 MPa) for 24 h. Then, the

^{*} Corresponding author. Tel./fax: +86 10 62334204. *E-mail address:* sjiao@ustb.edu.cn (S. Jiao).

Fig. 1. Powder XRD pattern of the pre-formed pellet sintered at 1100 °C for 4 h.

preliminary deposited salt was melt in a vertical tubular furnace (900 $^{\circ}$ C) which was protected by argon air and the pre-melted CaCl₂ was conserved in a dry system.

The electrodeoxidation experiment was conducted in a gas tight system at about 900 °C. A recrystallized alumina crucible (0.076 m outer diameter, 0.07 m inner diameter, 0.12 m height, and 0.003 m thickness) that contained pre-melted $CaCl_2$ was kept in a cylindrical alumina (0.08 m inner diameter, 1 m height tube) that was placed in a vertical tubular furnace. The reactor was made gastight with the help of suitable metallic clamps and rubber O ring. A stainless steel rod, wired to the oxide pellet, and a graphite rod (0.006 m in diameter) were used as cathode and anode, respectively. The cathodic product was obtained by electrolyzing the sintered pellet at 900 °C in molten calcium chloride under a constant voltage of 3 V.

The analytical measurements involved phase and microstructure analyses of the reduced samples. The phase composition of the

Fig. 3. A typical current-time curve for the electrodeoxidation of a prepared oxides pellet (10 mm in diameter and 5 mm in height) under a constant voltage of 3.0 for 12 h.

samples was determined by powder X-ray diffraction analysis (Model MAC, M21XVHF22). The microstructural compositions were analyzed by a scanning electron microscope coupled with energy dispersive X-ray analysis (JEOL, JSM-6701F).

3. Results and discussion

Fig. 1 indicated that no new phase other than Nb_2O_5 and SiO_2 was formed during the sintering stage. SEM photographs, Fig. 2(a–d), suggested a compositional homogeneity, with respect to the distribution of niobium, oxygen and silicon, throughout entire cross section of the sintered pellet, which is a prerequisite for obtaining a better Nb_5Si_4 alloy.

Fig. 3 showed the current *vs.* time profile of an electroreduction reaction at an applied voltage of 3 V. Fig. 3 clearly displayed three distinct features, an initial sharp rise(up to ~ 2.0 A) followed by

Fig. 2. The SEM image (a) and elements maps (b-d) of the pre-formed pellet sintered at 1100 °C for 4 h.

Download English Version:

https://daneshyari.com/en/article/1600548

Download Persian Version:

https://daneshyari.com/article/1600548

Daneshyari.com