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a b s t r a c t

Though extensively studied, hardness, defined as the resistance of a material to deformation, still
remains a challenging issue for a formal theoretical description due to its inherent mechanical
complexity. The widely applied Teter’s empirical correlation between hardness and shear modulus has
been considered to be not always valid for a large variety of materials. The main reason is that shear
modulus only responses to elastic deformation whereas the hardness links both elastic and permanent
plastic properties. We found that the intrinsic correlation between hardness and elasticity of materials
correctly predicts Vickers hardness for a wide variety of crystalline materials as well as bulk metallic
glasses (BMGs). Our results suggest that, if a material is intrinsically brittle (such as BMGs that fail in the
elastic regime), its Vickers hardness linearly correlates with the shear modulus (Hv¼ 0.151G). This
correlation also provides a robust theoretical evidence on the famous empirical correlation observed by
Teter in 1998. On the other hand, our results demonstrate that the hardness of polycrystalline materials
can be correlated with the product of the squared Pugh’s modulus ratio and the shear modulus
(Hv ¼ 2ðk2GÞ0:585 � 3 where k¼G/B is Pugh’s modulus ratio). Our work combines those aspects that
were previously argued strongly, and, most importantly, is capable to correctly predict the hardness of all
hard compounds known included in several pervious models.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the great efforts, to understand the theory of hardness
and to design new ultrahard materials are still very challenging for
materials scientists [1e4]. During the past few years, several semi-
empirical theoretical models [5e9] have been developed to
estimate hardness ofmaterials based on: (i) the bond length, charge
density, and ionicity [5], (ii) the strength of the chemical bonds [6],
(iii) the thermodynamical concept of energy density per chemical
bonding [7], and (iv) the connection between the bond electron-
holding energy and hardness through electronegativity [8], and
(v) the temperature-dependent constraint theory for hardness of
multicomponent bulk metallic glasses (BMGs) [9]. Experimentally,
hardness is a highly complex property since the applied stress may
be dependent on the crystallographic orientations, the loading
forces and the size of the indenters. In addition, hardness is also
characterized by the ability to resist to both elastic and irreversible
plastic deformations and can be affected significantly by defects
(i.e., dislocations) and grain sizes [10]. Therefore, hardness is not
a quantity that can be easily determined in a well-defined absolute

scale [1]. It has been often argued [13] that hardness measurements
unavoidably suffer from an error of about 10%. All these aspects
add huge complexity to a formal theoretical definition of hardness
[5e9].

Within this context, to find a simple way to estimate hardness of
real materials is highly desirable. Unlike hardness, the elastic
properties of materials can be measured and calculated in a highly
accurate manner. Therefore, it has been historically natural to seek
a correlation between hardness and elasticity. The early linear
correlation between the hardness and bulk modulus (B) for several
covalent crystals (diamond, Si, Ge, GaSb, InSb) was successfully
established by Gilman and Cohen since 1950s [10,11]. Nevertheless,
successive studies demonstrated that an uniformed linear corre-
lation between hardness and bulk modulus does not really hold for
a wide variety of materials [1,12,13], as illustrated in Fig. 1(a).
Subsequently, Teter [12] established a better linear correlation
between hardness and shear modulus (G), as illustrated in Fig. 1(b).
This correlation suggests that the shear modulus, the resistance to
reversible deformation under shear strain, can correctly provide an
assessment of hardness for some materials. However, this correla-
tion is not always successful, as discussed in Refs. [5,13,14]. For
instance, tungsten carbide (WC) has a very large bulk modulus
(439 GPa) and shear modulus (282 GPa) but its hardness is only
30 GPa [15], clearly violating the Teter’s linear correlation [see
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Fig. 1(b)] [5]. Although the link between hardness and elastic shear
modulus can be arguable, it is certain to say that the Teter’s
correlation grasped the key.

In this manuscript, following the spirit of Teter’s empirical
correlation, we successfully established a theoretical model on the
hardness of materials through the introduction of the classic Pugh
modulus ratio of G/B proposed in 1954 [16]. We found that the
intrinsic correlation between hardness and elasticity of materials
correctly predicts Vickers hardness for a wide variety of crystalline
materials as well as BMGs. Our results suggest that, if a material is
intrinsically brittle (such as BMGs that fail in the elastic regime), its
Vickers hardness linearly correlates with the shear modulus
(Hv¼ 0.151G). This correlation also provides a robust theoretical
evidence for the famous empirical correlation observed by Teter in
1998. On the other hand, our results demonstrate that the hardness
of crystalline materials can be correlated with the product of
the squared Pugh’s modulus ratio and the shear modulus
(Hv ¼ 2ðk2GÞ0:585 � 3 where k is Pugh’s modulus ratio). This
formula provides the firm evidence that the hardness not only
correlates with shear modulus as observed by Teter, but also with
bulk modulus as observed by Gilman et al. Our work combines
those aspects that were previously argued strongly, and, most
importantly, is capable to correctly predict the hardness of all
compounds included in Teter’s [12], Gilman’s [4,10], Gao et al.’s [5]
and �Sim�unek and Vacká�r’s [6] sets. Also, our model clearly
demonstrates that the hardness of bulk metallic glasses is intrin-
sically based on the same fundamental theory as the crystalline
materials.We believe that our relation represents a step forward for
the understanding and predictability of hardness.

2. Model and results

According to Vicker [10], the hardness of Hv is the ratio between
the load force applied to the indenter, F, and the indentation surface
area:

Hv ¼ 2F sinðq=2Þ
d2

; (1)

where d and q are the mean indentation diagonal and angle
between opposite faces of the diamond squared pyramid indenter,
respectively (Fig. 2). In order to derive our model, we first assume
that (i) the diamond squared pyramid indenter can be divided into
four triangular based pyramid indenters and that (ii) the Vickers
hardness is measured within the elastic scale. Then, for each
triangular based pyramid, one can define the shear modulus G as,

G ¼ F
4A tanðaÞ (2)

which specifies the ratio between shear stress and the shear strain.
In terms of our model the exact shear area A on which the shear
force (F) acts is unknown. But, the deformation area A* [A*¼
1/8d2tan(a)] delimited by the klO0 triangle is well defined by the
indentation geometry. Therefore, we can express the exact shear
area (A) as:

A ¼ cA* ¼ c
8
d2tanðaÞ; (3)

where c is the proportional coefficient. It is clear that under elastic
shear deformation the deformation area (A*) will be extremely
small. However, upon real hardness measurements the deforma-
tion area (A*) should be large enough so that the coefficient c can be
safely neglected and Az A*. Under this assumption, equation (2)
can be revised as following,

G ¼ 2F
d2tan2ðaÞ (4)

Combining equations (1) and (4), the Vickers hardness reads

Hv ¼ G tan2ðaÞsinðq=2Þ ¼ 0:92G tan2ðaÞ; (5)

where the term sin(q/2) is intrinsically determined by the indenter
itself, which can be considered as a constant (originated from the
Vickers hardness, see equation (1)). For the diamond squared
pyramid indenter with q¼ 136�, sin(q/2) is equal to 0.92 for Vickers
hardness measurement. In an ideal form of indentation, tan(a)¼
0.404 because of a¼ (p� q)/2.0 (c.f., Fig. 2). Therefore, equation (5)
can be simplified as,

a

b

Fig. 1. Correlation of experimental Vickers hardness (Hv) with (a) bulk modulus (B)
and with (b) shear modulus (G) for 39 compounds (Table 2). Inset of panel (b): Hv vs. G
for 37 BMGs (see Table 1). The solid line denotes empirical Teter’s fitting values,
whereas dashed lines correspond to the value derived from Eq. (6). The black and
hollow squares denote data taken from Refs. [1,12].

Fig. 2. Illustration of indentation in terms of the squared diamond pyramid indenter.
The red framework highlights one of four triangular based pyramid indenters. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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