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Abstract

The diffusion of several proteins and acrylic polymers on controlled pore glass particles has been studied using the chromatographic technique.
Effective diffusivities for compounds of several molecular weights and different chemical nature diffusing in solids of different pore size were
measured together with the adsorption constants, using the chromatographic technique and the method of Kubin and Kucera. Several empirical,
semiempirical and phenomenological models are tested for the description of the experimental values of f (ratio between the effective and
the bulk diffusivities) vs. � (ratio between the size of the molecule and that of the pore). While the empirical and semiempirical models are
exponential and hyperbolic functions of �, respectively, the phenomenological models are based on the partition coefficient (Keq) and the
drag coefficient (K−1), which include the interaction energies between the diffusing molecules and the pore wall, changing the geometry
(sphere–plane or sphere–cylinder) and the nature of the interaction (Lifshitz–van der Waals, electrostatic and acid-base) from model to model.
The fit of the proposed models to experimental data as well as the value of the parameters obtained have been compared to data given in the
literature. Both a sphere–plane Lifshitz–van der Waals interaction model with linear increase of the Hamaker constant with � and a sphere-inner
cylinder multiple interaction models are chosen for polymethacrylates and proteins. Both are able to fit polyacrylate diffusion data well, while
the more complex SEI model including all interaction types is more adequate to describe protein diffusion.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The transport of a solute with a size similar to that of the
pore through which it is transported is known as hindered
diffusion (Shao and Baltus, 2000a,b; Deen, 1987), as this
transport is slower compared to that in the bulk phase. This
phenomenon is of great importance in devices for controlled
release of drugs and pesticides, ultrafiltration and other mem-
brane techniques for reaction and/or separation, in chromato-
graphic and electrophoretic separations, and in heterogeneous
catalysis (Shao and Baltus, 2000a,b). Diffusion transport inside
porous and polymeric solids have been the subject of extensive
work, from studies whose aim was the experimental observation
of such phenomenon to others where mathematical models for
the description of transport, that is, hydrodynamic treatment of
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diffusion, were introduced (Smith and Deen, 1983; Davidson
and Deen, 1988; Shao and Baltus, 2000a,b). Deen (1987) wrote
an extensive review aimed at both types of studies and mainly
focused on the hindered diffusion of neutral spherical particles.
Transport of polymers in porous materials is usually described
as hindered diffusion. This diffusion is much influenced by
the existence of interactions (Davidson and Deen, 1988; Smith
and Deen, 1983) and the type of polymer: hard sphere (Smith
and Deen, 1983) or random coiled polymer (Cifra and Bleha,
2005). As a random coiled polymer is much more flexible,
it can change its shape to the pore where it is diffusing.
Thus, values of the effective diffusivity significantly higher
than zero are obtained even though the radius of gyration of
the polymer is bigger than the pore size (Cifra and Bleha,
2005).

Usually, f, the ratio between the effective diffusivity and
the bulk diffusivity is considered as a function of � (the ratio
between the particle size and that of the pore). Since 1960, an
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Table 1
Empirical and semiempirical models used in the present work

Reference Model Equation(s)

Model 1 Exponential
(Ternan, 1987) model f = De

D0
= Ae�part

�
e(−B�) (T1-1)

Model 2 Hyperbolic
(Ternan, 1987) model f = De

D0
= (1 − �)2

1 + P�
(T1-2)

empirical model based on an exponential decrease of f with �
is used (Ternan, 1987). This author also proposed an approach
that can be considered intermediate between the phenomeno-
logical and empirical models (Ternan, 1987). He considered
that the ratio f depends on two factors: a concentration factor
and a viscosity or pore wall effect factor. The first term is also
named the steric partitioning factor. The second one takes into
account the possible variation of the viscosity of the fluid in
the proximity of the wall (which is supposed to increase) and
it is, in fact, a hyperbolic function with a unique parameter,
P. Thus, all data can be fitted by a function with only one pa-
rameter, P, assumed to be function of geometric coefficients
and viscosities. The increase in viscosity is assumed to be a
direct consequence of the hydrogen-bond interactions between
the solvent molecules and the pore wall atoms. The exponential
model and the Ternan model are shown in Table 1, Eqs. (T1-1)
and (T1-2), respectively.

Phenomenological models are known since 1950. This type
of models are based on the existence of two phenomena that
happen when the molecule is inside the pore: one, of thermo-
dynamic nature and coming from the concentration gradient
across the pore is partition; the other is a hydrodynamic trans-
port effect due to the proximity of the solid wall to the particle,
the loss of kinetic energy due to movement increases as drag
increases. The concentration gradient depends on steric exclu-
sion, due to size, and long- and short-range interactions, due
to the chemical nature of both solute and porous solid (Shao
and Baltus, 2000a,b; Bhattacharjee and Sharma, 1995, 1997).
To describe partition in terms of its influence in the hindered
diffusion coefficient, an equilibrium partition coefficient, Keq,
has to be calculated. This coefficient is the ratio between the
average solute concentration in the pore and that of bulk at
equilibrium and is shown by the first factor of f in Eq. (T2-1),
Table 2, where E(�) includes all the long- and short-range
interactions of the particle with the solid and � is the di-
mensionless radius (Eq. (T2-2), Table 2). A similar expres-
sion (second factor in the same equation) can be used to
calculate the drag or transport factor, K−1, which is the ra-
tio between the friction coefficient in bulk and that inside
the pore.

When the solute spherical particles are only subjected to
steric exclusion and the drag experienced by all particles is
similar to that experienced by particles in the centre of the
pore (� = 0), the relationship between the hindered diffusion
coefficient and the diffusion coefficient in bulk is described by

the Renkin equation (Renkin, 1954):

f = De

D0

= KeqK
−1

= (1 − �)2(1 − 2.104� + 2.089�3 − 0.948�5). (1)

Moreover, the phenomenological model of Renkin was the
first one of several models addressing the situation of a non-
interacting spherical particle moving along the centreline of the
pore (Deen, 1987). In recent years, much research on macro-
molecules of hydrophilic nature and in membrane technology
has been done. The behaviour of these compounds interact-
ing with membranes of a similar nature is of importance in
a number of interesting new separation techniques based on
membranes: from ultrafiltration to pervaporation (Casado et al.,
2005; Bhattacharjee and Sharma, 1997; Deen, 1987). The
development of new models considering repulsive or attrac-
tive interactions is leading to the understanding of transport
phenomena under these conditions. Shao and Baltus (2000a,b)
reported in their studies the enhancement in the diffusional
behaviour of dextran and polyethylenglycol compared to a neu-
tral spherical molecule. Thus, calculated values of f at different
values of � were greater than those expected considering the
Renkin equation. Their results encompassed a limited � range
between 0 and 0.2, so a model describing the interaction en-
ergy between a sphere and a plane sufficed for the description
of such behaviour. These authors (Shao and Baltus, 2000a,b)
applied a known long-range interaction: the Lifschitz–van der
Waals (LW) force, described mainly by the Hamaker con-
stant with the mentioned geometry, being able to fit their
results successfully. Their model is described by Eq. (T2-3) in
Table 2, where A is the Hamaker constant for interactions be-
tween materials in a given medium and is obtained from the
Hamaker constants for every material in the system in vacuum
(estimated from measured Aii values for each material with
Eq. (T2-4), Table 2). Shao and Baltus (2000a) could describe
the diffusion for their polymers through pores of track-etched
membranes of polycarbonate using a Hamaker constant value of
5.0×10−21 J to calculate the partition coefficient by integration
of the interaction energy term for each non-dimensional radial
position (�).

The model of Bhattacharjee and Sharma (1995) takes into
account the long-range LW interaction of a spherical parti-
cle moving inside a cylindrical pore. While the sphere–plane
approach is valid when the value of � is small, it underesti-
mates considerably the interaction energy when the molecule
and the pore sizes are similar. Their simple solution approaches
with little error the most rigorous numerical calculation of
the energy. First, they calculated the energy between the par-
ticle and an atom of the pore, followed by the deduction of
the energy of interaction of the particle and pore by inte-
grating the previous energy over the wall material, reaching
a dimensionless equation of the energy (dimensionless vari-
ables in Table 2, Eq. (T2-2)). As the general equation obtained
by these authors cannot be solved analytically, they proposed
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