
Chemical Engineering Science 60 (2005) 2815–2819

www.elsevier.com/locate/ces

Shorter communication

On themodeling of non-Newtonian purely viscous flow through high
porosity synthetic foams

G.J.F. Smit∗, J.P. du Plessis, J.M.Wilms
Department of Applied Mathematics, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa

Received 30 June 2004; received in revised form 28 October 2004; accepted 4 November 2004

Abstract

In a previous paper a model was proposed for the prediction of non-Newtonian, purely viscous flow, through isotropic high porosity
synthetic foams. However, based on work done for creep flow of a Newtonian fluid through two-dimensional arrays of squares, an
adaptation to the existing model is discussed and a volumetric partitioning is proposed which facilitates the introduction of possible stagnant
regions within the flow domain. Three models, for non-Newtonian purely viscous flow, were derived that allow for various staggering
configuration, namely doubly, singly staggered and non-staggered configurations. Results from the proposed model for a doubly staggered
configuration compared favorably to experimental pressure gradient data.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Smit and Du Plessis (1999)have proposed a model for the
prediction of non-Newtonian, purely viscous flow, through
isotropic high porosity synthetic foams. The model was de-
rived by volumetric averaging of the equations of motion
over a two-phase system of stationary solids and a traversing
fluid, yielding (Whitaker, 1967)
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where〈 〉 denotes the phase average.
The integral terms in Eq. (1) were evaluated by utilizing

a formally introducedrepresentative unit cell(RUC), shown
in Fig. 1. By assuming that the wall shear stresses�w and
��w alongS|| andS⊥, respectively, are uniform and piece-
wise constant overSf s , the following expression is obtained
for the pressure gradient in the Darcy flow regime:

−∇〈p〉 = S|| + �S⊥
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The parameter� is the ratio of the magnitudes of the aver-
age transverse channel velocity to the average stream-wise
channel velocity. For this particular porous medium� can
be assumed to be unity.
If d−ds is the distance between plates andw=q(�/�) the

magnitude of the average velocity in the channel between
plates, the wall shear stress for a power-law fluid is given
by Smit and Du Plessis (2000)as
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where� is the porosity,K is a consistency index or absolute
viscosity (for power-law fluid), andn is a power-law con-
stant. The tortuosity�, which is the ratio between the aver-
age streamline length and the fluid displacement, was given
by Smit and Du Plessis (1999)as

�
�

≡ 4

(3− �)2
. (4)

The resulting one-dimensional form of the gradient of the
intrinsic phase average pressure for purely viscous power-
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law creep flow may then be expressed as
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whered is a macroscopic characteristic length representing
the linear dimension of the RUC (Du Plessis et al., 1994)
andq is the specific discharge.
The results predicted by Eq. (5) compared fairly well with

experimental results (Smit and Du Plessis, 1999), i.e., us-
ing the above RUC model (Fig.1). However, based on work
done by Lloyd et al. (2004) for creep flow of a Newtonian
fluid through two-dimensional arrays of squares, an adapta-
tion to Eq. (5) is discussed and a volumetric partitioning is
proposed which facilitates the introduction of possible stag-
nant regions within the flow domain.

2. New model

Three RUC models are considered that allow for various
staggering configuration, namely doubly staggered shown
in Fig. 1 and the singly staggered and non-staggered con-
figurations shown inFig. 2. The stream-wise volume is
denoted byU||, the volume for transverse flow byU⊥,
the solid volume is given byUs , andUg is the stagnant
volume.
The two integrals in Eq. (1) are split into stream-wise and

transverse integrals, yielding
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Fig. 1. Representative unit cell, doubly staggered configuration.
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Fig. 2. Singly (a) and non-staggered (b) RUC configurations.

of which the underlined term is zero. The remaining pressure
integral in Eq. (6) is split, for the up- and downstream wall
faces ofU⊥, into a channel wall average pressure,p̄w, and
a wall pressure deviation,̃pw, as follows:
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An RUCmust be a proper substitute for arepresentative ele-
mentary volume(REV), of which the boundary cuts through
the foam at all possible geometric positions. The surface
integrals in Eqs. (6) and (7) must therefore be evaluated
over all possible RUCs and since the pressure equation is
stream-wise, this will only effect integration overS⊥ planes.
For illustration purposes, consider the cross-section between
the plane ABCD and the singly staggered RUC shown in
Fig. 2. The resulting cross-section, as well as sections of ad-



Download English Version:

https://daneshyari.com/en/article/160335

Download Persian Version:

https://daneshyari.com/article/160335

Daneshyari.com

https://daneshyari.com/en/article/160335
https://daneshyari.com/article/160335
https://daneshyari.com

