Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Microwave dielectric properties of low loss $Li_2(Mg_{0.95}A_{0.05})_3TiO_6(A = Ca^{2+}, Ni^{2+}, Zn^{2+}, Mn^{2+})$ ceramics system

Keywords: Low loss Ceramic Microwave dielectric properties Li₂Mg₃TiO₆

ABSTRACT

Ultra low loss microwave dielectric materials of Li₂(Mg_{0.95}A_{0.05})₃TiO₆(A = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺) ceramics were investigated through conventional solid-state reaction method. The effects of different bivalent A²⁺(A²⁺ = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺) substitution for Mg on the phase composition, microstructure and microwave dielectric properties were systematically discussed. The XRD patterns indicated that the main peaks belonged to Li₂Mg₃TiO₆, and little impurities were formed. We have found that Zn-substitution for Mg, which could increase its Q × f value and lower the $|\tau_f|$ compared to that of pure Li₂Mg₃TiO₆, had a significant effect on the Q × f and τ_f of the ceramics. Li₂(Mg_{0.95}A_{0.05})₃TiO₆ ceramics specimens with A = Zn²⁺ sintered at 1275 °C for 6h exhibited excellent microwave dielectric properties of ε_r ~14.6, Q × f~158,000GHz (at 9.11GHz) and a near-zero τ_f ~4.3.2 ppm/°C.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of mobile communications, microwave dielectric ceramics play an important role in multilayer or chip devices and attract much attention. These ceramics must fulfil a high quality factor ($Q \times f$), an appropriate dielectric constant (ε_r) and a near-zero temperature coefficient of resonant frequency (τ_f) [1,2]. However, many ceramics cannot meet these requirements simultaneously. Therefore, new material with excellent properties is still a hot issue for modern industry.

In previous works, the lithium based oxide ceramics such as Li₂MgTi₃O₈, Li₂MgTiO₄ and Li₂Mg₃BO₆(B=Ti, Sn, Zr) possess excellent microwave dielectric properties [3–5]. George and Sebastian firstly reported that the Li₂MgTi₃O₈ ceramics was produced by reaction-sintering method and had a good microwave dielectric properties of $\varepsilon_r \sim 27.2$, Q × $f \sim 42000$ GHz and $\tau_f \sim 3.2$ ppm/°C [3]. According to Su et al. [6], with the partial replacement of Mg^{2+} by Zn²⁺, the Li₂(Mg_{0.94}Zn_{0.06})Ti₃O₈ ceramics exhibited good microwave dielectric properties of ϵ_r ~27.1, Q \times *f*~ 44,800 GHz and τ_f ~1.9 ppm/°C. Li₂Mg₃TiO₆ ceramics was reported to exhibit excellent microwave dielectric properties ($\epsilon_r \sim 15.2$, Q $\times f \sim 152,000$ GHz, $\tau_{f} \sim$ -39 ppm/°C) when sintered at 1280 °C for 6h [5]. Afterwards, in order to meet the requirements for LTCC, the 4 wt% LiF addition was used to lower the sintering temperature of Li₂Mg₃TiO₆ ceramics and achieved a good dielectric properties of ϵ_r ~16.2, Q imes f ~131,000 GHz and τ_{f} ~-44 ppm/°C when sintered at 950 °C [7]. However, there were few work about the effects of different divalent ions substitution on microwave dielectric properties of Li₂(M $g_{0.95}A_{0.05})_3$ TiO₆ (A = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺) ceramics.

In this paper, the effect on the microwave dielectric properties of $Li_2Mg_3TiO_6$ ceramics resulting from isovalent substitution of A

 $(A = Ca^{2+}, Ni^{2+}, Zn^{2+}, Mn^{2+})$ at the Mg site was firstly investigated. In addition, the X-ray diffraction (XRD) pattern and the scanning electron microscopy (SEM) analysis were used to analyze the microstructures.

2. Experimental procedure

Li₂(Mg_{0.95}A_{0.05})₃TiO₆(A = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺) ceramics were prepared using high-purity oxide powders of Li₂CO₃(99%), MgO(99.9%), CaCO₃(99.9%), ZnO(99.9%), NiO(99%), MnCO₃(99%) and TiO₂(99.9%). The raw materials were mixed according to the formula of Li₂(Mg_{0.95}A_{0.05})₃TiO₆ (A = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺). The mixed powders were milled with ZrO₂ balls for 8h in distilled water. All mixtures were dried and calcined at 1000 °C for 4h. The calcined powders were remilled with ZrO₂ balls for 8h in distilled water, and then dried. These mixtures were mixed together with 6 wt% paraffin as a binder. Afterwards, the granulated powders were pressed into disks with 10mm in diameter and about 5 mm in height. Finally, these cylinder were sintered at 1225–1300 °C for 6 h in air.

The crystalline phases of the sintered samples were investigated by X-ray diffraction (XRD, Rigaku D/max 2550 PC, Tokyo, Japan) with Cu Ka radiation generated at 40kV and 40mA. The microstructure of the ceramic surfaces were performed and analyzed by a scanning electron microscopy (SEM, ZEISS MERLIN Compact, Germany). The microwave dielectric properties of sintered specimen were measured by a network analyzer (N5234A, Agilent Co, America) in the frequency range of 8–13 GHz. The dielectric constants were measured by exciting the TE₀₁ resonant mode of dielectric resonator as suggested by Hakki-Coleman [8]. The unload quality factors were measured using TE₀₁ mode by the cavity method [9].

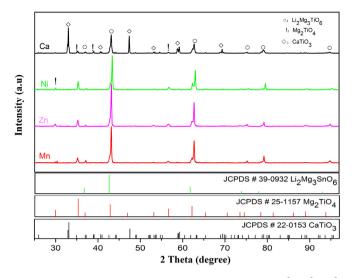
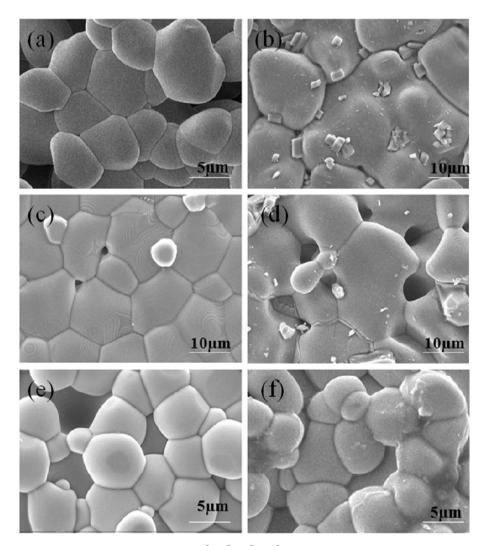


Fig. 1. The X-ray diffraction patterns of $Li_2(Mg_{0.95}A_{0.05})_3 TiO_6~(A=Ca^{2+},~Ni^{2+},~Zn^{2+},~Mn^{2+})$ ceramics sintered at 1275 °C.

The temperature coefficient of resonant frequency (τ_f) was measured in the temperature range from 25 °C to 85 °C and was calculated by the following formula:


$$\tau_f = \frac{f_{85} - f_{25}}{f_{25}(85 - 25)} \times 10^6 (ppm/^{\circ}C) \tag{1}$$

where f_{85} and f_{25} were the resonant frequencies at 85 °C and 25 °C.

3. Results and discussions

The XRD patterns of Li₂(Mg_{0.95}A_{0.05})₃TiO₆(A = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺) ceramics sintered at 1275 °C for 6h are shown in Fig. 1. All samples exhibited the Li₂Mg₃SnO₆-like (JCPDS#39-0932) cubic phase with ordered rock salt structure. The main peaks of Li₂Mg₃TiO₆ shifted slightly to the higher angle than Li₂Mg₃SnO₆ phase due to the smaller ionic radius of Ti⁴⁺ (R = 0.605 Å, CN = 6) than that of Sn⁴⁺ (R = 0.69 Å, CN = 6) [5]. Besides, little impurity peaks defined as Mg₂TiO₄ were formed because lithium was easily volatile when the sintering temperature was higher than 1000 °C [10]. Specially, the peaks of CaTiO₃ were found in Li₂(Mg_{0.95}Ca_{0.05})₃. TiO₆. Similar phenomena were reported in CaCO₃-doped Li₂Mg-Ti₃O₈ and Li₂ZnTi₃O₈ ceramics systems [11].

Fig. 2 presents the SEM photographs of Li₂(Mg_{0.95}A_{0.05})₃TiO₆-

Fig. 2. The surface microstructural photographs of $Li_2(Mg_{0.95}A_{0.05})_3$ TiO₆ (A = Ca²⁺, Ni²⁺, Zn²⁺, Mn²⁺) ceramics: (a)A = Ca, (b)A = Ni, (c)A = Zn, (d)A = Mn sintered at 1275 °C, and $Li_2(Mg_{0.95}Ca_{0.05})_3$ TiO₆ ceramics sintered at (e) 1250 °C and (f) 1300 °C.

Download English Version:

https://daneshyari.com/en/article/1605132

Download Persian Version:

https://daneshyari.com/article/1605132

Daneshyari.com