Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Microwave dielectric properties of ZrO₂ and SnO₂ doped Ca₅Nb₄TiO₁₇ ceramics

Sea-Fue Wang^{*}, Yung-Fu Hsu, Chun-Ya Chen

Department of Materials and Minerals Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan

A R T I C L E I N F O

Article history: Received 30 November 2015 Received in revised form 16 March 2016 Accepted 31 March 2016 Available online 4 April 2016

Keywords: Microwave dielectric properties Dopant Microstructure Densification

ABSTRACT

In this study, the effects of B-site dopants, such as Sn^{4+} and Zr^{4+} ions, on the microwave dielectric properties of the Ca₅Nb₄TiO₁₇ ceramic were investigated, in contrast to the replacement of A-site ions shown in literature. The sintering temperature of the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ ceramics depended on the Sn⁴⁺ content, while the Zr⁴⁺ dopant had no impact on the densification of the Ca₅Nb₄Ti_{1-x}ZrxO₁₇ ceramics. Both the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ and Ca₅Nb₄Ti_{1-x}Zr_xO₁₇ samples have a dense microstructure with closely packed plate-like grains and little porosity. The relative permittivity ε_r of the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ ceramics decreased from 45.0 for x = 0 to 30.3 for x = 1.0, because the more highly polarizable TiO₂ (α = 15.6 Å³) was replaced by the less polarizable SnO₂ (α = 6.70 Å³). The quality factor (Q × f) value increased significantly to 33,542 GHz for x = 0.3, which was primarily caused by the increase in the average grain size. The temperature coefficient of resonance frequency (τ_f) of the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ ceramics moved toward the positive direction with the Sn⁴⁺ substitution. The ε_r value of the Ca₅Nb₄Ti_{1-x}ZrxO₁₇ ceramics decreased almost linearly from 45.2 for x = 0 to 40.6 for x = 0.5 with an increase in Zr⁴⁺ content, due to the lower molecular polarizability of ZrO₂ (α = 7.33 Å³). The Q × f and τ_f values were observed to decrease with an increasing x value, which can be explained by the decreasing degree of ordering.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dielectric ceramics with the general formula $A_nB_nO_{3n+2}$ (A = Ca, Sr, Mg, or La; B = Ti or Nb) have drawn considerable interest since they possess a combination of important piezoelectric, ferroelectric, and electrical properties [1,2]. Their crystal structures are derived from the ABO₃ perovskite-type layer structure with slabs of corner-shared BO₆ octahedra separated by an interslab region [3–5]. The crystal structure type is given by the n value, which is the number of octahedral layers in the perovskite slab, and can be tuned by tailoring the oxygen content. Generally the n = 4 members of the $A_nB_nO_{3n+2}$ compounds, such as La₂Ti₂O₇ and Sr₂Nb₂O₇, are ferroelectric at room temperature with super-high Curie points, and are used as high-temperature piezoelectrics [4]. Recently, compositions with n = 5 and 4.5 members, such as (CaLa₄)Ti₅O₁₇ and (Ca_{0.5}La₄)Ti_{4.5}O_{15.5} (i.e., CaLa₈Ti₉O₃₁), were found to be paraelectrics with low dielectric loss and high thermal stability,

E-mail address: sfwang@ntut.edu.tw (S.-F. Wang).

suggesting great potential application in microwave dielectrics [3,4,6,7].

More recently, several n = 5 members in the A₅B₅O₁₇ series, including Ca₅Ta₄TiO₁₇, Ca₅La₄TiO₁₇, and Ca₅Nb₄TiO₁₇ ceramics, have been shown to possess good microwave dielectric properties. Jawahar et al. presented the microwave dielectric properties of Ca₅La₄TiO₁₇ ceramic, including ε_r = 55.2, Q × f = 17,359 GHz, and $\tau_{\rm f} = -20 \text{ ppm/}^{\circ}\text{C}$ [8], and Joseph et al. reported that Ca₅Nb₄TiO₁₇ and $Ca_5Ta_4TiO_{17}$ ceramics possessed an ϵ_r of 44.9 and 40.1, respectively, a Q \times f of 17,600 and 16,450 GHz, respectively, and a $\tau_{\rm f}$ of approximately -112.9 and -53.6 ppm/°C, respectively [9]. Two modifications were reported for the room-temperature structure of the Ca₅Nb₄TiO₁₇ ceramic, including one with the polar symmetry P2m, and another with the non-polar symmetry $P2_1/c$ [3,4,10]. Besides the contradictory report on the crystal structure, to the best of our knowledge, reports in the literature regarding the effects of the dopants on the microwave dielectric properties of the Ca₅Nb₄TiO₁₇ ceramic were very limited. Anjana et al. reported that partial substitution of the Ca^{2+} ions with Mg^{2+} ions in a Ca_5N b₄TiO₁₇ ceramic was found to lower its sintering temperature and resulted in the microwave dielectric properties of an ε_r of 37.5, a Q × f of 22,500 GHz, and a τ_f of approximately –4.3 ppm/°C [11]. On

^{*} Corresponding author. Present address: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan.

the other hand, Li et al. showed that the microwave properties of Ca_{4.6}Zn_{0.4}Nb₄TiO₁₇ exhibited $\epsilon_r=52$, Q \times f = 9937 GHz, and $\tau_f=-8.6~ppm/^{\circ}C$ [12], while Manan et al. reported that the ϵ_r , Q \times f, and τ_f values of the Ca₃Sr₂Nb₄TiO₁₇ ceramic were 53.4, 1166 GHz, and $-6.5~ppm/^{\circ}C$, respectively [6].

In contrast to the replacement of A-site ions shown in literature, the objective of this study was to investigate the effects of B-site dopants such as Sn^{4+} and Zr^{4+} ions on the densification, microstructural evolution, and microwave dielectric properties of the Ca₅Nb₄TiO₁₇ ceramic. The discussion of the processing, microstructure, and property relations was based on the results of density measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), and microwave dielectric measurements.

2. Experimental procedure

Dielectric ceramic powders of Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ and Ca₅Nb₄Ti₁₋ _xZr_xO₁₇ were prepared through the solid-state reaction method. Raw materials, including high-purity (>99.9% purity) CaCO₃, Nb₂O₅, TiO₂, SnO₂, and ZrO₂ (all from Alfa; reagent grade), in proportions according to the compositions of the $Ca_5Nb_4Ti_{1-x}Sn_xO_{17}$ (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) and $Ca_5Nb_4Ti_{1-x}Zr_xO_{17}$ (x = 0, 0.1, 0.3, and 0.5) powders, were mixed and milled in a methyl alcohol solution, using polyethylene jars and zirconia balls, for 24 h. The milled slurries were dried overnight in an 80 °C oven, and then the dried powders were calcined at 1200 °C for 4 h. The calcined powders were re-milled in methyl alcohol for 24 h, and subsequently phase identified using XRD analysis (Rigaku DMX-2200). The calcined Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ and Ca₅Nb₄Ti_{1-x}Zr_xO₁₇ powders were mixed with a 5 wt% of 15% PVA solution and then pressed into disc-shaped compacts under a uniaxial pressure of 120 MPa. The ceramic compacts were heat treated at 550 °C for 4 h to remove the PVA, followed by sintering at temperatures from 1400 °C to 1600 °C for 4 h at a heating rate of 10 °C/min.

The sintered densities of the samples were determined using a liquid displacement method. Phase identification of the ground powders of the sintered ceramics was performed using XRD. Microstructure examination was carried out on the sintered, as well as the fractured, surfaces of the samples using SEM (Hitachi S4700) and energy dispersive spectroscopy (EDS). The permittivities and unloaded Q values at microwave frequencies were measured in the TE_{01δ} mode using the Hakki and Coleman method [13–15] with a network analyzer (HP 8722ES). The temperature coefficients of the resonance frequency τ_f were measured at temperatures ranging from 25 to 85 °C.

3. Results and discussion

Mixtures of raw oxide materials in proportions according to the compositions of the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ and Ca₅Nb₄Ti_{1-x}Zr_xO₁₇ formulas were calcined at 1200 °C. XRD results of the former calcined powders displayed a pure monoclinic Ca₅Nb₄TiO₁₇ phase (JCPDS Card No. 51-0412) with no second phase present for $x \le 0.5$, and with second phases of an orthorhombic CaSnO₃ (JCPDS Card No. 31-0312) and a cubic Ca13Sn16Nb12O7 (JCPDS Card No. 37-0191) for x > 0.5. XRD results of the latter calcined powders were indexed to be an orthorhombic Ca₂Nb₂O₇ phase (JCPDS Card No. 70-2006), and indicated the absence of a second phase. The calcined powders were pelletized, binder burned-out, and then sintered at temperatures between 1400 °C and 1600 °C. Fig. 1(a) presents the relative densities of Ca5Nb4Ti1-xSnxO17 ceramics sintered at different temperatures. Densification of a pure Ca₅Nb₄TiO₁₇ ceramic was observed to be achieved at 1550 $^{\circ}$ C. With the incorporation of Sn4+ ions at the Ti⁴⁺ sites, the sintering temperature of the Ca₅Nb₄Ti₁₋ $_x$ Sn_xO₁₇ ceramic was increased slightly to 1575 °C for x = 0.1 to

Fig. 1. Relative densities of (a) $Ca_5Nb_4Ti_{1-x}Sn_xO_{17}$ and (b) $Ca_5Nb_4Ti_{1-x}Zr_xO_{17}$ ceramics sintered at different temperatures.

0.5. Further increasing the x value above 0.5, the temperature for achieving the maximum density of the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ ceramic was reduced to 1525 °C, which was probably owing to the existence of the second phases CaSnO₃ and Ca_{1.3}Sn_{1.6}Nb_{1.2}O₇ in the calcined powders. For the ceramics sintered at temperatures beyond the maximum densification temperature, the density degraded, because of the presence of trapped voids. The maximum densities of the Ca₅Nb₄Ti_{1-x}Sn_xO₁₇ ceramics for x > 0.7 were much larger than those of other samples, primarily due to the fact that the molecular weight of Sn (118.69 g/mol) is much larger than that of Ti (47.90 g/mol), and partly caused by less residual porosity. Fig. 1(b) plots the relative densities of Ca₅Nb₄Ti_{1-x}Zr_xO₁₇ ceramics that were sintered at various temperatures and had x values up to 0.5. As observed, the partial replacement of Ti⁴⁺ ions by Zr⁴⁺ ions did not significantly change the densification behavior of the Ca₅Nb₄TiO₁₇ ceramic, although the Zr⁴⁺ substitution slightly assisted the sintering at low temperatures. All the prepared Ca₅Nb₄Ti_{1-x}Zr_xO₁₇ ceramics were found to achieve their maximum densities at 1550 °C. The maximum sintered density of the Ca₅Nb₄Ti_{1-x}Zr_xO₁₇ ceramics increased slightly with increasing Zr⁴⁺ content, simply due to the slightly higher molecular weight of Zr (91.22 g/mole), compared with Ti.

Download English Version:

https://daneshyari.com/en/article/1605663

Download Persian Version:

https://daneshyari.com/article/1605663

Daneshyari.com