Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

One-Dimensional MoS₂-Decorated TiO₂ nanotube gas sensors for efficient alcohol sensing

P.X. Zhao ^a, Y. Tang ^a, J. Mao ^{a, b}, Y.X. Chen ^a, H. Song ^a, J.W. Wang ^a, Y. Song ^a, Y.Q. Liang ^{a, b, *}, X.M. Zhang ^c

^a School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
^b Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China
^c Tianjin Product Quality Inspection Technology Research, Tianjin, 300308, China

ARTICLE INFO

Article history: Received 28 January 2016 Received in revised form 2 March 2016 Accepted 5 March 2016 Available online 10 March 2016

Keywords: TiO₂ nanotubes MoS₂ p-n heterojunction Gas sensor

ABSTRACT

One-Dimensional (1D) MoS_2 -decorated TiO_2 nanotubes were synthesized by the anodization of TiO_2 nanotubes followed by a hydrothermal process for MoS_2 -decoration. The structure, morphology and surface characteristics of the MoS_2 - TiO_2 composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer–Emmett–Teller (BET). The results showed that TiO_2 nanotubes can be filled and covered by flake-like MoS_2 nanostructure. The numbers of the MoS_2 layers ranged from 1 to 3. The TiO_2 nanotube sensor shows a normal n-type response to reducing ethanol gas, whereas MoS_2 - TiO_2 exhibits p-type response with excellent sensing performances. Specially, the sensitivity for the MoS_2 - TiO_2 heterojunction increased almost 11 times than TiO_2 nanotubes. This conversion of sensing behavior can be explained by the formation of p-n heterojunction structures.

© 2016 Published by Elsevier B.V.

1. Introduction

Volatile organic compounds (VOCs) such as ammonia, acetone, methanol, formaldehyde, and ethanol are the basic sources of indoor air pollution and give rise to harmful influences on human health [1–4]. Therefore, a great deal of research has been focused on the development of functional materials for high-performance of VOCs sensing. Titanium oxide, n-type semiconductor with the band gap of ~3.2 eV, is one of the most promising candidates for gas sensor due to its low cost and environmental safety [5-8]. Specially, TiO₂ nanotubes were fabricated to improve gas sensing characteristics on a large scale, as nanotubes being one dimensional, nanostructure with uniform morphology and a large surface area with controllable less agglomeration have potential applications. But titanium oxide nanotubes has shortcoming of poor selectivity from a mixture of gas, long response and recovery time, and high operating temperature. Recently, many methods were investigated with the focus of improving the gas sensing

E-mail address: yqliang@tju.edu.cn (Y.Q. Liang).

be produced for particular gas species by doping [9-12]. However, these sensitive materials can be poisoned easily in some gas atmospheres, which can lead to reduction in sensitivity and stability. Nowadays, semiconducting 2D materials have recently attracted intensive attention, mainly due to the atomically thin-layered 2D structure and excellent electrical properties of graphene sheets [13–15]. Among the various inorganic 2D layered materials, molybdenum disulfide (MoS₂) has been investigated by a number of researchers due to its good electrical, mechanical, optical, magnetic and electrochemical properties [16,17]. Intrinsic MoS₂ is a kind of ntype semiconductors and its band gap is in the range of 1.2-1.9 eV determined by the layer numbers [18]. However, MoS₂ can exhibit either a *p*-or a *n*-type gas sensing response to reductive vapor [19] depending on their annealing temperature in air. Especially, it is reported that incorporating two or more semiconductors to form a heterojunction interface could enhance the gas sensor performance [20,21]. However, till date, to the best of our knowledge, no report has been published on the MoS₂-TiO₂ p-n junctions on gas/vapor sensing performance.

performance of TiO_2 nanotubes. Doping with noble metals such as Au, Pt, Pb, and Ag is known to be effective, because active sites can

Accordingly, we reported a facile way to tune gas and vapor sensing performance by blending n-type TiO₂ nanotube with p-

^{*} Corresponding author. School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.

type MoS₂ (in present work) to form hybrid architectures. This novel features of this p-n heterojunction not only take the advantages of TiO₂ nanotubes that (i) fast electron transportation through vertical tube walls (ii) high effective surface area facilitating more number of adsorption sites, but also can potentially present localized highly reactive areas by MoS₂ modification and thus achieve unexpected characteristics for sensing applications. The sensing properties of MoS₂-TiO₂ composites were evaluated with NO₂, NH₃, C₂H₅OH, and other organics. The MoS₂-TiO₂ composites show excellent sensing performances towards ethanol vapors at low operating temperature. The mechanisms of the outstanding sensing performance for the MoS₂-TiO₂ heterojunction were also proposed. This undoubtedly opens up new possibilities for flexible and wearable devices for various environmental sensing applications.

2. Experiment

2.1. Synthesis of MoS₂-TiO₂ composites

Highly ordered TiO₂ nanotubes were fabricated via anodization of commercially available pure titanium foils, the detailed synthesis route is as follows [22]. Ti plate was anodized in water/ethylene glycol (1:100 Vol.%) mixtures containing 0.13 M NH₄F in a 30 °C water bath with a platinum foil as a cathode, and Ti substrate as an anode. A constant anodization voltage of 60 V (time = 2 h) was applied. After anodization, the samples were rinsed in deionized water, and dried in air. Modification of the TiO₂ nanotubes with MoS₂ nanoflake was done by hydrothermal routes [23]. In a typical procedure, 0.137 g MoCl₅ was dissolved in 5 ml of distilled water, and then was dissolved in the mixture solution of ethanol, oleic acid, and water (15 ml: 4 ml: 5 ml). 0.3 g Na₂S·9H₂O dissolved in 5 ml of distilled water as reducing agent was injected into the above solutions and stirred for 10 min. The final solution was transferred into a 60 ml Teflon-lined stainless steel autoclave and the Ti sheet with TiO₂ nanotubes was immersed in this solution. The autoclave was maintained at 180 °C for 12 h. After natural cooling, the Ti sheet with TiO₂ nanotubes was removed from the autoclave and washed multiple times with distilled water, and then dried in air. Subsequently, the as-synthesized Ti sheet was calcined at 400 °C in Ar atmosphere for 1 h.

2.2. Characterization

The surface morphology and structure of samples were characterized by field emission scanning electron microscopy (FE-SEM, Hitachi S-4800), X-ray diffraction (XRD, RIGAKU/DMAX), and transmission electron microscopy (TEM, PhilipsTecnai G2 F20). Surface chemical analysis of MoS₂-TiO₂ binary oxides were performed by X-ray photoelectron spectroscopy (XPS) using a PHL1600ESCA instrument equipped with a monochromatic Mg Ka X-ray source (E = 1253.6 eV) operating at 250 W. The nitrogen adsorption–desorption isotherms were measured at –196 °C with a Gemini VII surface area and porosity system. The specific surface area was estimated by the Brunauer–Emmett–Teller (BET) method.

2.3. Gas sensing measurement

The sensor tests were carried out by using a high-precision sensor testing system NS-4003 series (Zhong-Ke Micro-nano IOT (Internet of Things) Ltd, China) in a chamber with a volume of 10 L at a relative humidity (RH) of 45%. The fabrication process was illustrated as follows. Briefly, the sensor device was fabricated by dispersing the MoS₂-TiO₂ sample into an adhesive terpineol to form a paste and then coated onto the outside surface of an alumina tube. To purify the sensor and improve the electrical contact, the devices were annealed in 80 °C before measurements. In the analysis of the gas responses, the sensitivity (*S*), is defined as the ratio between the electrical resistance to a target gas (*Rg*) and the electrical resistance in air (*Ra*) for a given gas concentration if Rg > Ra or vice versa if Ra > Rg. The sensitivity is defined as the slope of the output calibration curve, which is sensor response versus gas concentration.

3. Results and discussion

3.1. Structural characterization

SEM images of the surface morphology of the TiO₂ nanotubes and MoS₂-TiO₂ nanocomposite are shown in Fig. 1. The fabricated TiO₂ nanotubes are found to have an average pore diameter of approximately 120 nm with a wall thickness of 20 nm in Fig. 1(a). The regularly spaced rings at the smooth sidewalls of the nanotubes are observed in Fig. 1(b). After reaction in Mo/S precursors, the morphology of hybrid nanostructure is distinctly different from that for blank TiO₂ nanotubes, in which flake-like nanostructure were uniformly distributed on the framework of TiO₂ nanotubes. In addition, the wall thickness of nanotubes increases to 90 nm, and the surface of the tube wall becomes much rougher in Fig. 1(d). Moreover, it is noteworthy that the in situ produced MoS₂ phases can be intimately attached to the whole cross-sectional profile and internal tubes. The nanocomposite has a large surface area, which is beneficial for sensing performance. The phase and crystallinity of samples were examined by X-ray diffraction. Fig. 2(I) shows the XRD patterns of TiO₂ nanotubes before and after MoS₂ modification. Both of the two samples were annealed at 400 °C in Ar ambient. As can be seen in Fig. 2(I)a, the TiO₂ nanotubes exhibit two phases of anatase TiO₂ and Ti substrate. The diffraction peak situated at 25.3° is ascribed to anatase TiO_2 (101). Fig. 2(I)b shows the XRD patterns of MoS₂ decorated TiO₂ nanotubes. Obviously, a weak diffraction peak at $2\theta = 33.9^{\circ}$ in the figure can be attributed to the $(1 \ 0 \ 0)$ diffraction of the MoS₂ films. To investigate the specific surface area of the two samples, the nitrogen physisorption isotherms of the two samples were shown in Fig. 2(II). Both of the samples show a type II isotherm with type-H3 hysteresis as defined by IUPAC conventions. The BET surface area of MoS₂-TiO₂ composites is 47.4 m^2/g , which is much higher than those of TiO₂ nanotubes (with BET surface area of 26.8 m^2/g). The larger surface area could provide more active sites, which may be favorable to the improvement of gas response.

In order to further confirm the formation of MoS₂ nanostructure, TEM images of the resulting MoS₂-TiO₂ are shown in Fig. 3. Fig. 3(a) exhibits the low-resolution TEM images of a single MoS₂-TiO₂ heterojunction, which indicates that the TiO₂ tubes were filled by MoS₂ nanostructure. It can be observed in a higher magnification that a small amount of belt-like structure scattered in the surface of TiO₂ (marked by triangular symbols), exhibiting parallel lines corresponding to the different layers of MoS₂ sheets (number of layers $\approx 1-3$). The MoS₂ sheets present an expanded interlayer distance of 0.8 nm (standard for 0.61 nm), indicating a significant lattice expansion [24]. The grain labeled by red circle shows the lattice fringes of 0.352 nm, which can be attributed to anatase $TiO_2(101)$ plane. The inset in Fig. 3(a) shows the elemental distribution along the horizontal direction of tube length. It can be seen that the concentrations of Ti and O in the two edges of nanotubes are lower than the middle region, while Mo and S exhibit a stable distribution along this direction. This further confirms that the TiO₂ nanotubes were well coated by MoS₂ structure. The Ti, O, Mo, and S elemental maps (in Fig. 3(c)–(f)) of the MoS₂-TiO₂ composite confirm homogeneous distribution of the four Download English Version:

https://daneshyari.com/en/article/1605957

Download Persian Version:

https://daneshyari.com/article/1605957

Daneshyari.com