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Abstract

In multiphase chemical reactor analysis the prediction of the dispersed phase distribution plays a major role in achieving reasonable results.
The combined CFD–PBE (population balance equations) are computationally intensive requiring efficient numerical methods for dealing with
them. This paper presents the formulation and validation of a spectral least squares method for solving the steady state population balance
equations in Rd+1, with d the physical spatial dimension and 1 the internal property dimension. The least-squares method consists in minimizing
the integral of the square of the residual over the computational domain. Spectral convergence of the L2-norm error of the solution and of the
moments of the solution are verified for the zero- and one-dimensional cases using model problems with analytical solutions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Population balance modeling is an active field of research due
to its application to several engineering and scientific problems.
This method is commonly used to study precipitation, polymer-
ization, particle size distribution, dispersed phase distribution
in multiphase flow problems, and so on. In particular in multi-
phase flow problems, the dispersed phase distribution presents
a strong effect in the hydrodynamic properties and phase distri-
bution. For that reason, considerable efforts have been made in
order to develop polydispersed multi-fluid models with an in-
herent population balance module that will be able to consider
the effects of the variations in the size and shape distributions
of the dispersed phase. In particular, the present status on PBE
modeling of bubbly flows has been examined (Jakobsen et al.,
2005).

Using a population balance approach the dispersed phase is
commonly treated using a density function, DF, for instance
f (r, �, t) where r is the spatial vector position, � is the prop-
erty of interest of the dispersed phase, and t the time. Thus,
f (r, �, t) d� can represent for example the average number of
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particles per unit volume around the point x in the time t, with
the property between � and �+d�. The evolution of this density
function must take into account the different processes that con-
trol particle population such as breakage, coalescence, growth
and convective transport of the particles. The resulting equa-
tion is a nonlinear partial integro-differential equation which
requires to be solved by a suitable numerical method, although
analytical approximations can sometimes be derived for some
particular cases, see for example Patil and Andrews (1998).

The method of moments is an efficient method to solve the
PBE, but it is only applicable to a limited number of problems
and gives no information about the shape of the distribution.
For example, Frenklach (1985) applied the method of mo-
ments to a coagulation process where the coagulation rate
was constant. For an arbitrary coagulation rate function, this
formulation results in an excess of unknowns compared to the
number of equations whichh is denoted as a closure problem
(Hulburt and Katz, 2003). One way to avoid this problem is to
assume the shape of the density function, and so the parame-
ters of the density function are related, closing off the set of
moments equations (Williams, 1986). A different alternative is
to express the density function as a truncated series of some
orthogonal polynomials (Hulburt and Katz, 2003). McGraw
(1997) suggested a modification of the method of moment
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which consists in using a quadrature approximation in order to
avoid the closure problem. McGraw (1997) based his method
on the product difference (PD) algorithm suggested by Gordon
(1968), calling this approach quadrature method of moments
(QMOM). Marchisio et al. (2003) and Marchisio et al. (2004a)
used this approach to study particulate systems. Later, McGraw
and Wright (2002) proposed a new moment closure method,
the Jacobian matrix transformation (JMT) which avoids the use
of the PD algorithm. Similarly, Marchisio et al. (2004b) ex-
tended the QMOM method to multifluid applications calling
this approach the direct quadrature method of moments (DQ-
MOM). Bove et al. (2005) presented the parallel parent and
daughter classes (PPDC) which used the PD algorithm for re-
ducing the computational cost of the QMOM. It is important
to mention that the PD algorithm is a numerical ill-conditioned
method for computing the Gauss quadrature rule (e.g. Lambin
and Gaspard, 1982). In general, the computation of the quadra-
ture rule based on the power moments of the density function is
quite sensitive to small errors as the number of moments used
becomes large (e.g. Golub and Welsh, 1969; Gautschi, 1994).
Therefore, the applicability of QMOM is limited to no more
than 12 moments, although in certain applications it is claimed
that only a few moments are enough for obtaining reliable re-
sults (McGraw et al., 1997).

A different way of avoiding the closure problem is discussed
by Frenklach (2002) in the method of moments with interpola-
tive closure (MOMIC). In this case, the natural logarithmic of
the moments is expressed by a polynomial in the moment or-
der, and thus, the required moments are interpolated or extrap-
olated. Further discussion about the closure for the method of
moments can be found in Diemer and Olson (2002).

An alternative strategy is to employ projection methods, such
as finite element methods (FEM), in which the solution is ap-
proximated as a linear combination of the basis functions over
a finite number of sub-domains. Chen et al. (1996) developed
a wavelet-Galerkin method for solving PBEs for the treat-
ment of particle-size distribution in problems of a continuous,
mixed-suspension and mixed-product removal crystallizer with
effects of breakage. Niemanis and Hounslow (1998) applied
FEM to the steady-state PBE, finding more accurate solutions
than using the sectional methods and using less computational
power. Liu and Cameron (2001) proposed the use of a wavelet-
based method for the treatment of problems involving particle
nucleation, growth and agglomeration. Niemanis and Houn-
slow (2002) showed an a posteriori error estimate of the FEM
applied to PBE. A posteriori error estimate is an important
characteristic of the projection methods, which allows to quan-
titatively assess the quality of an obtained numerical solution.
This characteristic is not commonly presented in the previous
discussed methods. Due to the fact that for some applications
such as chemical reactor simulations the computational cost of
the solver of the PBE requires to be reduced, high-order poly-
nomial approximation methods could be an option, improving
the behavior of FEM solvers. The global approximation of the
solution, compared with the local one of FEM or sectional
methods, permits to reduce the final computational cost since
less points are required for the same accuracy. These methods,

including FEM, can be presented in the framework of the
methods of weighted residuals (MWR). Depending on the
election of the trial and test functions different methods can
be obtained (Canuto et al., 2000). Subramain and Ramkrishna
(1971) presented a Tau method for solving the distribution of
the population of microbial cells that present growth and break-
age processes. Mantzaris et al. (2001) discussed the Galerkin,
Tau and pseudo-spectral methods as a tool for solving multi-
variable cell population balance models that present growth
and breakage. Recently, Dorao and Jakobsen (2005a, 2006)
discussed the applicability of the least squares method (LSM)
(Jiang, 1998a; Bochev, 2001; Proot and Gerritsma, 2002;
Pontaza and Reddy, 2003) for solving the population balance
equation.

The LSM consists in finding the solution which minimizes
the L2 norm of the residual over the computational domain.
The LSM can also be considered a special case of the MWR
where the trial and test functions are equal to the residual
equation (Finlayson, 1972). The interest on the LSM has in-
creased quite a lot during the last decade as a consequence of its
properties:

• Independent of the underlining equation, least squares al-
ways leads to symmetric positive-definite systems of linear
algebraic equations, which can be efficiently solved.

• For first order problems, e.g. an advective transport equation,
the LSM does not require any special numerical treatment
like the up-wind discretization in the case of finite difference.
Thus, no numerical diffusion is introduced.

• The evaluation of the accuracy of the approximate solution
is many areas of engineering and applied science is rather
important. The LSM meets the need for a posteriori error
analysis by supplying an error indicator in the form of the
residuals that are minimized by the procedure. In particular,
this is a very reliable indicator which can be used for example
for grid refinement.

• Finally, the LSM is formulated in a very general setting.
Thus, the programming can be done in a very systematic
way and new applications requires a minimum work reduc-
ing drastically cost and programming errors in code devel-
opment.

Dorao and Jakobsen (2005a, 2006) applied the least-squares
spectral method to the population balance equation involving
breakage and coalescence processes using Legendre polynomi-
als for the particle space discretization and Crank–Nicolson for
the time discretization. Thus, the solver shown spectral con-
vergence in the property space while algebraic convergence
rate for time. Later, Dorao and Jakobsen (2005b) discussed the
space–time least-squares formulation for solving the PBE. In
this space–time formulation, time is treated as an additional di-
mension, which allows high-order accuracy both in space and
in time (e.g. De Maerschalck, 2003; Pontaza and Reddy, 2004).
In this way, space–time can be solved at once, or per time-step
on a space–time slab in a kind of semi-discrete formulation.

The main goal of this paper is to extend the previous mathe-
matical framework for solving the PBE including the physical
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