Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Effect of heat treatment on microstructure and mechanical property of Al–10%Mg₂Si alloy

^a Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China ^b School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522, Australia

ARTICLE INFO

Article history: Received 19 November 2015 Received in revised form 14 December 2015 Accepted 17 December 2015 Available online 19 December 2015

Keywords: Al—Mg₂Si alloy Microstructure Mechanical property Heat treatment

ABSTRACT

After solution treatment at 520 °C for 6 h and subsequent aging at 200 °C for 6 h, eutectic Mg₂Si phase in Al–10%Mg₂Si alloy transforms from long rod to short fiber-like and spherical morphologies, and a great number of nano-sized β'' particles precipitate in the Al matrix. The fine eutectic Mg₂Si phase combined with nano-sized precipitates gives rise to enhanced hardness and high tensile strength of Al–10%Mg₂Si alloy (increasing from 186 MPa to 234.6 MPa).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, materials design has shifted focus to pursue light weight, low cost, environmental friendliness. Magnesium silicide (Mg₂Si) exhibits high melting temperature (1085 °C), low density (1.99 × 10³ kgm⁻³), high hardness (4.5×10^9 Nm⁻²), high elastic modulus (120 GPa) and low coefficient of thermal expansion (7.5×10^{-6} K⁻¹) [1,2]. The excellence combination of physical and mechanical properties of Mg₂Si makes it a suitable candidate as reinforcement to prepare Al–Mg₂Si alloys which are attractive candidate materials for automobile, aerospace and other applications [3–7].

In Al-Mg₂Si alloys, Mg₂Si phase exists in two forms: primary Mg₂Si and (Al + Mg₂Si) eutectic structure. The mechanical properties of Al-Mg₂Si alloys strongly depend upon the morphology, size and distribution of the primary and eutectic phases. Many advanced processing techniques have been adopted to artificially manipulate primary Mg₂Si particles transforming from enormous dendrite to fine polyhedron (octahedron or cube) in order to increase mechanical properties of alloys, such as rapid solidification processing [8,9], hot extrusion [10] and additions of refiners or modifiers [11–15].

Eutectic structure also affects the mechanical properties of Al–Mg₂Si alloys. Heat treatment exhibits good characteristics in homogenizing and refining eutectic microstructure and improving the properties of alloys, with low-cost and convenience to process [16–19]. So in the paper, the effect of heat treatment on microstructure and mechanical property of Al–10%Mg₂Si alloy was studied. It is favorable to realize the relationship between eutectic Mg₂Si and mechanical properties of Al–Mg₂Si alloys. Further, it may be of reference value for the manipulation of eutectic Mg₂Si phase in other metal matrix composites or alloys.

2. Experiment

Commercial pure Al (99.7%, all compositions quoted in this work are in wt.% unless otherwise stated), commercial pure crystalline Si (99.9%) and commercial pure Mg (99.8%) were used as starting materials to prepare Al–10%Mg₂Si alloy in a 25 kW medium frequency induction furnace. The alloy was remelted at 750 °C and held at this temperature. After being held 30 min, the melt was poured into a cast iron mold.

Samples of Al-10%Mg₂Si alloy for heat treatment were solution treated at 520 °C for 6 h, followed by quenching in cold water, and subsequently aged at 200 °C for 6 h (henceforth referred to as T6 heat treatment).

Metallographic specimens were cut at the same position of the tabulate samples and polished by a standard procedure. The

^{*} Corresponding author. E-mail addresses: lichongme@tju.edu.cn, ronaldo-007@163.com (C. Li).

microstructure of Al–10%Mg₂Si alloy was observed by scanning electron microscope (SEM, Hitachi S-4800). NaOH water solution (15%) was used as etchants of polishing samples to reveal three dimensional morphology of eutectic Mg₂Si. Thin foils for transmission electron microscopy (TEM) were prepared from 3 mm discs by using twin-jet electropolishing in a 30% nitric acid/70% methanol solution at -30 °C. TEM examinations were performed using a JEM-2100 microscope.

Hardness measurements were performed using a macro Vickers hardness tester with 2.5 kg load and a dwell time of 10 s. Each reported hardness value (Vickers hardness number, HVN) is the average of 10 individual measurements. Tensile testing was carried out at room temperature by a CSS-44100 tensile test machine, and the fracture surface was examined by SEM. The tensile strength and elongation were an average of at least 3 testing values.

3. Results and discussion

The microstructures of the Al-10%Mg₂Si alloy in the as-cast condition and after T6 heat treatment are shown in Fig. 1. It can be seen that two different solidified microstructures exist in the Al-10%Mg₂Si alloy. The primary α-Al is surrounded by Al-Mg₂Si binary eutectic structure (Fig. 1a and b). Interestingly, unlike the eutectic microstructure of as-cast Al-10%Mg₂Si alloy where large needle-like Mg₂Si particles (Fig. 1c) form in the Al matrix, the eutectic microstructure with very fine dot-like Mg₂Si particles has formed after T6 heat treatment, as shown in Fig. 1d. To investigate the change of the eutectic Mg₂Si particles with heat treatment, detailed three-dimensional image analysis was conducted on SEM obtained after Al matrix was deeply etched by NaOH water solution (15%) (Fig. 2). It can be seen that after T6 heat treatment, eutectic Mg₂Si transforms from long rod (needle in two-dimensional observation (Fig. 1c)) to short fiber or sphere (dot in twodimensional observation (Fig. 1d), as shown in Fig. 2a and b.

For Al-Mg₂Si pseudobinary system, the maximum solubility of Mg₂Si in Al is 1.91 wt.% [20]. During the solution treatment process, the concave pit has large curvature (marked as A in Fig. 2a).

Therefore, the Mg and Si atoms will dissolve in the Al matrix and diffuse from this position to flat interface with lower atom concentration [17], leading to the fragmentation of long rod-like eutectic Mg₂Si. With the prolonging time of solution treatment, eutectic Mg₂Si phase continuously dissolves, diffuses and spherizes to reduce the surface energy, resulting in the formation of Mg₂Si particles with short fiber-like and spherical morphologies (marked as B and C in Fig. 2b). Most of the Mg₂Si particles in cast Al–10% Mg₂Si alloy are more than 20 μ m in length (Fig. 2a). After T6 heat treatment, the size of most Mg₂Si particles has reduced to less than 5 μ m, and even 1 μ m (Fig. 2b).

Moreover, it is found that a number of nano-sized β'' particles are embedded in the Al matrix after T6 heat treatment, and the particles have only a diameter of less than 20 nm, as shown in Fig. 3. In Al-Mg–Si wrought alloys, the dissolution precipitation sequence of β (Mg₂Si) phase during aging has been well accepted as supersaturation solution \rightarrow GP zone (Mg/Si clusters) $\rightarrow \beta'' \rightarrow \beta' \rightarrow \beta$ [21,22]. For Al-10%Mg₂Si alloy, after solution treatment, Mg and Si elements exceed equilibrium concentration in the supersaturated solid solution of Al matrix. During the subsequently artificial aging process, Mg and Si composite clusters continuously grow and transform into nano-sized metastable β'' particles. The detail of precipitation kinetics and behavior of the metastable (β'' and β') and stable (β) phases in Al-Mg₂Si cast alloy remains to be researched and determined.

The variation of the mechanical properties of the Al–10%Mg₂Si alloy under the states of as-cast and T6 heat treatment is presented in Table 1. Due to the refining eutectic structure and the precipitation of nano-sized particles in Al matrix, the alloy exhibits an enhanced hardening response. The hardness of primary α -Al and eutectic structure increases to 76.4 and 92.2HVN, respectively (corresponding 69.1 and 78.5 HVN in cast alloy). Further T6 heat treatment leads to a significant improvement in ultimate tensile strength (UTS) and elongation. The ultimate tensile strength increases to 234.6 MPa, 26% higher than that of cast alloy (186.0 MPa), and elongation increases from 0.875% to 1.233%.

Fig. 4 shows the fracture surface of the Al-10%Mg₂Si alloy

Fig. 1. Microstructures of Al–10% Mg₂Si alloy: (a) in as-cast condition; (b) after T6 heat treatment; (c) enlarged morphology of eutectic Mg₂Si in (a); (d) enlarged morphology of eutectic Mg₂Si in (b).

Download English Version:

https://daneshyari.com/en/article/1606895

Download Persian Version:

https://daneshyari.com/article/1606895

Daneshyari.com