Journal of Alloys and Compounds 664 (2016) 453-459

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Correlation between the photoluminescence and chemical bonding in silicon nitride nanowires deposited by chemical vapour deposition

ALLOYS AND COMPOUNDS

癯

Umesh Rizal^a, Bhabani S. Swain^b, Bibhu P. Swain^{a,*}

^a Nano-Processing Laboratory, Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East Sikkim, 737136, India

^b School of Advanced Material Engineering, Koomin University, Jeongnung-dong, Sungbuk-gu, Seoul, Republic of Korea

ARTICLE INFO

Article history: Received 5 June 2015 Accepted 31 December 2015 Available online 5 January 2016

Keywords: Si₃N₄ nanowire FTIR spectra Photoluminescence spectra

ABSTRACT

We have fabricated needle-shaped silicon nitride (Si₃N₄) nanowires (NWs) on p-type Si substrate by chemical vapour deposition reactor using Si powder and (H₂ and NH₃) as precursor gases. The NWs were characterized by fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy and X-ray photoelectron spectroscopy (XPS) in order to investigate structural and electronic properties. The vibrational signature at 467, 799 and 1085 cm⁻¹ confirmed the Si–N stretching vibration bands. The qualitative of Si₃N₄-NWs network were analysed by curve fitting of FTIR signature. The room temperature photoluminescence spectra of Si₃N₄-NWs reveals several emission bands centred at 3.219, 3.265, 3.319, 3.373, 3.432, 3.504, 3.577 and 3.631 eV, which are associated with electronic transitions between the conduction band and defect states. The valence band of appeared p, sp, sp², sp³ and 2s orbitals at 3.36, 6.42, 8.11, 9.73 and 12.36 eV respectively and shifted to higher binding energy with increasing of ammonia flow rate.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Silicon nitride nanowires (Si₃N₄-NWs) is an wide band gap (5.3 eV) semiconductor with fascinating properties, such as high strength at high temperature, good resistance to corrosion, wear, thermal shock and creep, excellent chemical stability, and so on [1–3]. Above mentioned properties favour Si₃N₄-NWs as a suitable material for a wide range of applications in high-temperature nanoscale electronics devices [4], optoelectronics devices [5] and sensors [6]. In the recent years, tremendous effort has been made to develop a variety of techniques to control the morphology of the synthesized Si₃N₄-NWs. Many of synthesised process use simple vapour phase reaction approach without using catalyst [7] thermal evaporation of SiO₂ and Si powder in presence of NH₃ [8], silica nano powder [9], polymer precursor [10], polysilazane [11], and using SiH₄ and NH₃ precursor by PECVD [12]. Cui et al. synthesised Si₃N₄-NWs by using microwave plasma enhanced chemical vapor deposition (MWPECVD) process using NH₃ gas [13]. Huo et al. synthesised of single-crystalline α -Si₃N₄ nanobelts has been developed, consisting of nitridation of a high-Si-content Fe-Si 'catalyst' by ammonia at 1300 °C [14]. Tang et al. synthesised Si₃N₄ nanorods by nitriding borosilicate glass with ammonia [15]. NH₃ preferred as a source of atomic nitrogen than N₂ which decomposition temperature is lower than that of molecular N₂. Ultra-high purity NH₃ is important for the growth of defect-free epitaxial nitride. Si₃N₄-NWs thin films were synthesised by using NH₃, N₂ and H₂ precursor gases. However, none of the above research group analyzes details of chemical network of Si₃N₄-NWs. Therefore, chemical network of Si₃N₄-NWs with optical properties and valance band study of Si₃N₄-NWs at different ammonia flow rate is an important attempt for fundamental research.

2. Experimental details

Si₃N₄-NWs samples were prepared on RCA cleaned p-type Si (100) substrate by using thermal CVD reactor. Silver (Ag) thin films of 5 nm was coated on p-type Si substrate by sputtering technique followed by annealing 700 °C in H₂ ambient environment for 1 h to form separate Ag-NPs. Si powder (99.999%) of 10 g was taken in a ceramic boat and placed at the middle (heating zone) of horizontal furnace and the Si substrates were placed at 6 cm from the ceramic boat containing Si powder. After the ceramic boat and Si substrate were placed inside the reactor, the reactor was pumped to sub-

^{*} Corresponding author. E-mail address: bibhu.s@smit.smu.edu.in (B.P. Swain).

atmospheric pressure. N₂ was flowed into the reactor for 2 h in order to overcome the residual gases in the reactor. The temperature of the furnace was increased to 1050 °C at a rate of at 5 °C/min. A typical condition was used in which N₂, H₂ flow rate were fixed at 120 and 80 sccm respectively, while NH₃ flow rate was varied from 2 to 12 sccm. The growth duration was fixed for 2 h. After deposition, furnace was cooled down gradually at a rate of 3 °C/min. The morphology and chemical network of Si₃N₄- NWs were studied using field emission scanning electron microscope (FESEM: JEOL-JEM-3000F), and Fourier transform infrared spectroscopy (FTIR). FTIR spectra were collected with a Perkin Elmer spectrometer (Model: Spectrum 2) operating in transmission mode in the range 450–1500 cm⁻¹ with a resolution of 1 cm⁻¹. Photoluminescence studies were conducted with a Perkin Elmer LS-45 fluorescence spectrometer with a Xe discharge lamp operating at room temperature. X-ray Photoelectron Spectroscopy (XPS) was characterised by SIGMA PROBE, ThermoVG, UK for chemical analysis of Si₃N₄-NWs. In particular, the valence band was analysed with a step size of 0.1 eV to examine electronic network of Si₃N₄-NWs.

3. Results and discussion

3.1. Microstructure

Fig. 1(a–d) shows FESEM images of Si₃N₄-NWs deposited on Si substrate using Ag-NPs. The as-synthesized Si₃N₄-NWs possess needle shaped morphology with the diameter varies in between 20 and 120 nm. As can be seen from Fig. 1(b–d), bunch of straight

Si₃N₄ NWs with smooth morphology are distributed randomly on the surface of a silicon substrate. Larger diameter NWs was observed for 4 sccm NH₃ flow rate, however the diameter of NWs decreases with increasing of NH₃ flow rate from 4 to 12 sccm. The majority of NWs rooted in clusters, develop into prism like microstructure with a sharp tip. Niu et al. observed similar kinds of microstructure of Si₃N₄-NWs on Au-NPs/Si substrate [16].

3.2. Bonding network of Si₃N₄-NWs

Fig. 2 (a) shows broad scan FTIR spectra of Si₃N₄-NWs ranging from 450 to 1500 cm⁻¹ in transmission mode. Moreover, the FTIR spectrum of our Si₃N₄-NWs sample exhibits four well defined vibration signatures centred at 464 cm⁻¹, 622 cm⁻¹, 793 cm⁻¹ and 1088 cm⁻¹. The broad vibrational signature at 464 cm⁻¹ corresponds to symmetric stretching of Si–N bonding [17]. A weak transmission peak centred at 620–670 cm⁻¹ corresponding to Si- H_n wagging [18]. The shifting of Si-H bond towards higher energy side may be due to backing of higher electronegativity nitrogen atom [19]. Inukai et al. observed the vibration signature of Si-N asymmetric TO stretching at 850 cm⁻¹ for Si₃N₄ thin films [20]. However, we have observed Si-N asymmetric TO stretching at 793 cm⁻¹. This red shift in Si–N asymmetric TO stretching can attribute to quantum confinement effect brought out by nano dimension material or phonon localization due to presence of defects in nanostructures. The presence of defects in nanostructures was further confirmed by our photoluminescence studies. Wada et al. observed Si-N stretching vibration signature of α-Si₃N₄ at

Fig. 1. Broad scan FESEM images of Si₃N₄-NWs (a), FESEM of Si₃N₄-NWs at 4 sccm NH₃ flow rate (b), FESEM of Si₃N₄-NWs at 8 sccm NH₃ flow rate (c), FESEM of Si₃N₄-NWs at 12 sccm NH₃ flow rate (d).

Download English Version:

https://daneshyari.com/en/article/1607163

Download Persian Version:

https://daneshyari.com/article/1607163

Daneshyari.com