Accepted Manuscript

Microstructure and mechanical properties of 7005 aluminum alloy processed by room temperature ECAP and subsequent annealing

Yulu Duan, Lei Tang, Guofu Xu, Ying Denga, Zhimin Yina

PII: S0925-8388(16)30022-6

DOI: 10.1016/j.jallcom.2016.01.022

Reference: JALCOM 36373

To appear in: Journal of Alloys and Compounds

Received Date: 15 November 2015 Revised Date: 20 December 2015

Accepted Date: 2 January 2016

Please cite this article as: Y. Duan, L. Tang, G. Xu, Y. Z. Microstructure and mechanical properties of 7005 aluminum alloy processed by room temperature ECAP and subsequent annealing, *Journal of Alloys and Compounds* (2016), doi: 10.1016/j.jallcom.2016.01.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Microstructure and mechanical properties of 7005 aluminum alloy

processed by room temperature ECAP and subsequent annealing

Yulu Duan^a, Lei Tang^a, Guofu Xu^{a, b, *}, Ying Deng^{a, b, *}, Zhimin Yin^{a, b}

^a School of Materials Science and Engineering, Central South University, Changsha 410083, China

^b Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South

University, Changsha 410083, China

Abstract: A coarse-grained microstructure of the extruded 7005 aluminum alloy was processed by equal channel

angular pressing (ECAP) via route B_C at room temperature. Microstructural evolution of the alloy processed by

ECAP with different passes and subsequent annealing treatment were analyzed by using optical microscope,

transmission electron microscope and electron backscatter diffraction. The results revealed that grains were refined

gradually, and the low angle boundaries were progressively transformed to high angle boundaries by an increasing

ECAP passes. After 7 ECAP passes, the average grain size decreased to ~0.87 µm, and the fraction of high angle

boundaries increased to ~65.5 %. Furthermore, the results of tensile testing indicated that the yield strength was

remarkably increased from ~170 MPa before ECAP to ~389 MPa after 7 ECAP passes, and the corresponding tensile

strength increased to ~400 MPa after 7 ECAP passes, maintaining an appropriate elongation of ~13 %. After

annealing treatment at 150 °C for 1 h, the samples processed by 7 ECAP passes obtained large elongation of ~16 %,

and still maintained a high yield strength of ~337 MPa and tensile strength of ~350 MPa, which may be attributed to

the recovery effects.

Keywords: 7005 aluminum alloy; Equal channel angular pressing; Microstructural evolution; Mechanical

properties

* Corresponding author, Tel: +86-731-88877217.

E-mail address: csuxgf660302@csu.edu.cn (Guofu Xu), csudengying@163.com (Ying Deng).

1

Download English Version:

https://daneshyari.com/en/article/1607173

Download Persian Version:

https://daneshyari.com/article/1607173

<u>Daneshyari.com</u>