

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Enhanced piezoelectric properties of Bi(Mg_{1/2}Ti_{1/2})O₃ modified BiFeO₃—BaTiO₃ ceramics near the morphotropic phase boundary

Li-Feng Zhu, Bo-Ping Zhang*, Shun Li, Lei Zhao, Ning Wang, Xin-Chao Shi

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China

ARTICLE INFO

Article history:
Received 5 June 2015
Received in revised form
17 December 2015
Accepted 1 January 2016
Available online 5 January 2016

Keywords: Ferroelectrics Piezoelectricity Phase transitions Curie temperature

ABSTRACT

(0.7-x)BiFeO₃-0.3BaTiO₃-xBi(Mg_{1/2}Ti_{1/2})O₃ system was designed to obtain morphotropic phase boundary (MPB) between rhombohedral (R) phase and pseudocubic (PC) one to enhance the piezoelectric property. Their phase structures were investigated by the X-ray diffraction, temperature dependence of dielectric constant ε_r and Raman spectrum, which revealed that the phase transition exists from R-PC two-phase coexistence at $0.00 \le x \le 0.04$ to PC-phase at $0.06 \le x \le 0.08$ at room temperature. Due to coexisting R-PC two phases near MPB region and the improvement of polarization property, high $d_{33} = 154$ pC/N, $k_p = 28.5\%$ and $P_r = 16.2$ µm/cm² were achieved as x = 0.04. This research revealed the potential of BiFeO₃–BaTiO₃–Bi(Mg_{1/2}Ti_{1/2})O₃ system as promising lead-free piezoelectric ceramics with relatively high Curie temperature $T_C = 482$ °C.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lead-based piezoelectric materials such as Pb(Zr,Ti)O₃ (PZT) are widely used in electromechanical applications because of their excellent piezoelectric characteristics [1-3]. Apart from serious environmental problems in preparing and using PZT-based ceramics due to toxic Pb, the applications of commercial soft PZT are limited in high temperature sensors field, such as deep oil exploration, geothermal drilling and electric aircraft because their piezoelectric properties become unstable when the working temperature exceeds 200 °C [4–6]. The operation temperature for most piezoelectric ceramics is limited generally to one half of T_C because of thermal depolarization and increased conductivity at high temperatures [4]. Therefore, seeking an environment friendly piezoelectric ceramics with high T_C and d_{33} have received considerable attention, among which BiFeO₃-BaTiO₃ (BF-BT) system has received great attentions since it has higher $T_C > 580$ °C [7]. As to the inferior piezoelectric property of BF-xBT ($d_{33} = 33-47$ pC/N at 0.25 < x < 0.33) [7], many efforts have been made to enhance d_{33} via increasing DC resistivity, improving polarization property and enhancing ferroelectric activity by adding small amount of MnO2 [7] and/or introducing a complex perovskites system such as $Bi(Mg_{1/2}Ti_{1/2})O_3$ [8], $Bi(Ni_{1/2}Ti_{1/2})O_3$ [9], $Bi(Zn_{1/2}Ti_{1/2})O_3$ [10] and so

on. Recently, Leontsev [7] reported that the direct current (DC) resistivity of 0.75BF-0.25BT ceramic increases effectively by five orders of magnitude from 2.7×10^7 to 7.6×10^{12} Ω m via MnO₂ doping. Because of the improvement of DC resistivity and polarization property with small amount of MnO₂ doping, a high piezoelectric property $d_{33}=116$ pC/N was achieved in 0.75BF-0.25BT+0.1wt%MnO₂ ceramic, which is far higher than $d_{33}=33-47$ pC/N in undoped BF-xBT (0.25 \leq x \leq 0.33) ceramics [7]. Besides, the high $d_{33}=116$ pC/N in 0.75BF-0.25BT+0.1wt%MnO₂ ceramic is also related to phase structure which lies in the morphotropic phase boundary (MPB) between rhombohedral (R) and pseudocubic (PC) phases. This value is also higher than $d_{33}=82$ pC/N in 0.69BF-0.31BT+0.1wt%MnO₂ ceramic which is a single PC-phase [7], further verifying the importance of MPB in enhancing the piezoelectric properties.

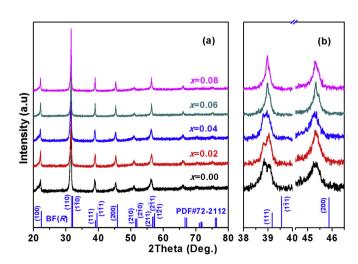
Early phase diagram of BF-xBT has shown R, cubic (C) and tetragonal (T) phases as $0.00 \le x \le 0.33$, $0.33 \le x \le 0.96$ and $0.96 \le x \le 1$, respectively [11]. The MPB between R and PC phases was also confirmed to be located in the 0.70BF-0.30BT composition [12]. Recently, a modified phase diagram of BF-xBT, in which the MPB composition between R and PC was found to be shifted to BF-rich side, lying in 0.75BF-0.25BT composition in Mn-doped counterparts, was reported by Leontsev et al. [7]. Hence, the addition of MnO₂ in BF-xBT system seems not only to increase DC resistivity but also to shift the MPB composition to BF-rich side. More evidences about the MPB composition shifting to BF-rich side could also be found in Mn-doped BF-BT-xBi(B_1B_2)O₃ systems (B_1 =Zn²⁺,

^{*} Corresponding author. E-mail address; bpzhang@ustb.edu.cn (B.-P. Zhang).

 Mg^{2+} , Ni^{2+} etc., and $B_2=Ti^{4+}$, Zr^{4+} , Nb^{5+} etc.), such as (0.71-x)BF- $0.29BT-xBi(Mg_{1/2}Ti_{1/2})O_3$ [8], $(0.71-x)BF-0.29BT-xBi(Ni_{1/2}Ti_{1/2})O_3$ [9] and $(0.71-x)BF-0.29BT-xBi(Zn_{1/2}Ti_{1/2})O_3$ [10] in which 0.6wt% MnO₂ was doped. All of these samples show a pure PC-phase, which also means that the MPB composition is lower than 0.29BT in these Mn-doped counterparts. However, in the (0.71-x)BF-0.29BT $xBi(Mg_{1/2}Ti_{1/2})O_3+0.6wt\%MnO_2$ system, the superior piezoelectric property $d_{33} = 155$ pC/N [8] was achieved at x = 0.03, which is attributed to the improvement of polarization property via introducing MnO₂ and Bi(Mg_{1/2}Ti_{1/2})O₃, although the sample shows a single PC-phase. In view of the important role of the phase structure especially the MPB in enhancing the piezoelectric properties [13–17], it is thus expectable that a higher d_{33} could be achieved in BF-BT system, whose composition lies in the MPB with introducing small amount of MnO₂ and Bi(Mg_{1/2}Ti_{1/2})O₃ additions. However, investigations on the effect of MPB on the electrical properties in BF-BT system are not fully understood so far, necessitating clarifying and further improving the piezoelectric properties.

In this work, (0.70-x)BF-0.30BT-xBi(Mg_{1/2}Ti_{1/2})O₃ ceramics were designed to seek MPB between PC and R phase to enhance the electrical properties. High piezoelectric properties of $d_{33}=154$ pC/N and $k_p=28.5\%$ were achieved in BF-BT-xBi(Mg_{1/2}Ti_{1/2})O₃ system because of the MPB effect with coexisting R and PC phases at x=0.04. Moreover, a high $T_C=482$ °C was also achieved in BF-BT-xBi(Mg_{1/2}Ti_{1/2})O₃ ceramics at x=0.04, suggesting that the BF-BT-xBi(Mg_{1/2}Ti_{1/2})O₃ system has promising prospects in high-temperature piezoelectric devices.

2. Experimental procedure


BaTiO₃ (100 nm, 99%), Bi₂O₃ (99%), Fe₂O₃ (99%), MgO (99%) and TiO₂ (99%) were used as raw materials, which were weighed according to a composition of (0.7-x)BiFeO₃–0.3BaTiO₃-xBi(Mg_{1/2}Ti_{1/2})O₃ (0.00 $\le x \le 0.08$ mol) (abbreviated as (0.7-x)BF-0.3BT-xBMT) and milled with alcohol (>99.7%). After dried and calcined at 780 °C for 4 h, the resultant powders were re-milled and pressed into disks of 10 mm in diameter and 1.5 mm in thickness under 80 MPa using 2 wt% polyvinyl alcohol (PVA) as the binder, followed by burning the binder at 650 °C for 1 h by 5 °C/min. Then the samples were cooled to room temperature and further heated up directly from room temperature to 1000 °C by 5 °C/min and held for 2 h. The sintered specimen was coated with silver on the upper and bottom surfaces and sintered at 600 °C for 30 min for the electrical measurement. The coated samples were poled under a DC field of 4 kV/mm at room temperature for 30 min in a silicone oil bath.

Bulk densities of sintered samples were measured using the Archimedes method. The crystallographic structures were studied by using X-ray diffraction (XRD: D/max-RB, Rigaku Inc., Japan) with a Cu K α radiation ($\lambda = 1.5406 \text{ Å}$) filtered through a Ni foil. Raman spectra were measured by HR800 Microscopic Confocal Raman spectrometer (Horiba Jobin Yvon Company, French), in which the light source of He-Ne gas laser, laser wavelength of 633 nm, using semiconductor cooling type of CCD detector. The temperature dependence of dielectric properties was examined using a programmable furnace with an LCR analyzer (TH2828S) at 1 kHz in temperature range of 25 °C-650 °C. The microstructure of the sintered samples was observed by field emission scanning electron microscopy (FESEM, SUPRATM 55, Japan). The piezoelectric properties were measured using a quasi-static piezoelectric coefficient testing meter (ZJ-3A, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China). The leakage current density was measured at 1000 V by AT683 insulation test instrument (Applent instruments Ltd, China). The planar electromechanical coupling coefficient k_p and the mechanical quality factor Q_m were determined by resonance-antiresonance method using an Agilent 4294A precision impedance analyzer (Hewlett—Packard, Palo Alto, CA). Ferroelectric hysteresis (*P-E*) loops were measured using a ferroelectric tester (RT6000HVA, Radiant Technologies, Inc., Albuquerque, NM).

3. Results and discussion

Fig. 1 shows room temperature XRD patterns of (0.7-x)BF-0.3BTxBMT (0.00 < x < 0.08) ceramics. All ceramics exhibit a perovskite structure without any trace of impurity phase within the detectable limit of the XRD, suggesting the formation of a stable solid solution. The standard diffraction peaks cited from BiFeO₃ (BF) with Rsymmetry (PDF#72-2112) are indicated by vertical lines for comparison. The diffraction peaks of the composition of x = 0.00correspond well to R-symmetry PDF#72-2112. Unlike the PDF#72-2112, the composition of x = 0.00 in Fig. 1b has higher peak intensity of $(111)_R$ than that of $(1\overline{1}1)_R$, suggesting that its phase structure consists of R and PC two phases rather than a single R phase. This result is consistent with the correlation reported by Wei et al. [12], in which the 0.7BF-0.3BT composition lies in the phase boundary between R- and PC-phase. As increasing x, the $(111)_R$ peak and $(1\overline{1}1)_R$ one gradually merge into a single peak at x > 0.06 as shown in Fig. 1b. suggesting that the phase structure of samples from R–PC two-phase coexistence at 0.00 < x < 0.04 turns into a single PC-phase at $x \ge 0.06$. Apart from the structural transition, a variation of peak position depending on x is also noticed in Fig. 1b. Although the 2θ angles of diffraction peaks for all samples are lower than those of the standard card of $R_{\rm BF}$ phase (PDF#72-2112), no obvious change on their values is observed as increasing x from 0.00 to 0.08. The constant 2θ angles of diffraction peaks at 0.00 < x < 0.08 suggest that the replacement of B-site ions, such as Fe³⁺ with $(Mg_{1/2}Ti_{1/2})^{3+}$, has little effect on the variation of cell volume in (0.7-x)BF-0.3BT-xBMT system. Hence, the lower 2θ angles of diffraction peaks than those of the standard card of R_{BF} phase (PDF#72-2112) are due to the replacement of the small ion radius's Bi^{3+} (r = 1.03 Å) by the large ion radius's Ba^{2+} (r = 1.35 Å) in A-sites, making lattice enlarged for all the samples [13].

To be more accurate, Rietveld refinement (using Materials studio software) was performed on the XRD patterns of (0.7-x)BF-0.3BT-xBMT ceramics ($x=0.02,\ 0.04$ and 0.08), and the observed, calculated and different XRD patterns are shown in Fig. 2. As can be seen, the experimental patterns (observed) are well fitted with the theoretically simulated ones, which were calculated by R symmetry

Fig. 1. X-ray diffraction patterns between the 2θ range of 20° -80° (a) enlarged ranges of 38° -40° and 44.5° -46.5° (b) for (0.7-x)BF-0.3BT-xBMT ceramics.

Download English Version:

https://daneshyari.com/en/article/1607183

Download Persian Version:

https://daneshyari.com/article/1607183

<u>Daneshyari.com</u>