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A phase field model accounting for anisotropic elastic energy has been formulated to investigate the
morphology and growth kinetics of a Widmanstatten microstructure during the isothermal austenite to
ferrite transformation in binary Fe—C. Physically realistic parameters are employed, for which the
thermodynamic functions and the diffusional mobilities are from the literatures that were assessed via
the Calphad technique and from experimental results respectively. The simulation results suggest that
the anisotropy of elastic energy, resulting from the lattice distortion between the ferrite precipitate and
the austenite matrix in the phase transformation, is sufficient to generate a plate-like Widmanstatten
structure. The growth of the ferrite precipitate follows completely different dynamic laws in different
directions, i.e., parabolic thickening in the direction of the plate thickness and linear lengthening in the
direction toward the plate tip. The chief reason for the former is that the moving of the plate broad sides
may be regarded as a migration of straight interfaces in the diffusion-controlled phase transformation;
the latter is because that the plate tip can maintain a constant radius of curvature during the phase
transition after a transient initial stage. Furthermore, the aspect ratio and the lengthening rate of the
Widmanstatten ferrite plate simulated by our analyses are in good agreement with the experimental

observations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The FCC-austenite (y) to BCC-ferrite (o) transformation upon
cooling is one of the most important microstructure transitions in
physical metallurgy. The grain size and morphology of the a pre-
cipitate have a great effect on the mechanical properties of steels.
Based on its technological importance and theoretical significance,
the v — o transformation has been widely studied [1,2]. Different
morphologies of ferrite might be produced during heat treatments,
such as grain boundary allotriomorphic ferrite, intragranular ferrite
idiomorph, acicular ferrite and plate-like Widmanstatten ferrite. In
particular, Widmanstatten ferrite, which is often observed at tem-
peratures between Aes; and Aeq, has a significant influence on the
mechanical performance of steels, especially the toughness.
Therefore, numerous research studies have been performed to
probe its formation mechanism and growth kinetics [3,4].
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In fact, the vy — o transformation is a very complicated process
that is accompanied by a competition between phase interface
migration and solute atom diffusion. Hence, it is difficult to clearly
investigate the formation of Widmanstatten ferrite by experi-
mental methods alone. There are many theoretical treatments for
the lengthening of Widmanstatten ferrite plates based on the
diffusion-controlled scheme, such as the Ivantsov model [5], Zen-
er—Hillert model [6], Trivedi model [7], Enomoto model [8] and
Townsend—Kirkaldy model [9]. These analytical solutions seem
capable of providing good agreement with the experimentally
observed growth rates when the effect of capillarity of the plate tip
is taken into account. However, various assumptions have been
proposed in these models in order to conveniently solve the
diffusional problem with a migrating interface, such as the local
equilibrium (LE) condition of the concentrations at the interface
and the use of a parabolic cylinder or a ledge for depiction of the
plate-like shape. As a consequence, these models are only suitable
for investigating simple morphologies in low-dimensional spaces,
and analyses of complicated microstructure evolutions in 2D or 3D
require other more sophisticated tools.
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Over the past two decades, phase field modeling (PFM) has been
a powerful framework for studying microstructure evolutions in
phase transformations, such as solidification [10,11], solid-state
transformation [12,13], crystallization [14], etc. The fundamental
idea is to use continuum field variables ¢; to identify the nature of
the phase, the presence of an interface, the local chemical
composition or the strain. The evolution of the microstructure is
represented by the temporal evolution of the field variables ¢;
driven by the reduction in the free energy of the system. The sig-
nificant computational advantage of this method is that it avoids
explicit tracking and setting up rules of evolution for the interfaces
[15].

A few PFMs that couple with the anisotropic interfacial energy
have been developed for studying the austenite to Widmanstatten
ferrite transformation in Fe—C [16—18]. They successfully investi-
gated the evolution of Widmanstatten plates under the influences
of the anisotropy of interfacial energy and the degrees of under-
cooling and supersaturation. As discussed in their papers, the plate-
like Widmanstatten structure would only develop if the interfacial
energy is very highly anisotropic, i.e., the interfacial energy at the
tip position is approximately 5 times as large as that on the broad
sides (a(010)/ (100 =5). However, such high anisotropy is a lack of
experimental evidence in a realistic Fe—C alloy. Qin et al. [19]
suggested that the ratio of the maximum value to the minimum
one of the interfacial anisotropy in cubic crystals is typically 1-2 by
applying the embedded-atom method. Hence, the anisotropy of
interfacial property may not be the most relevant factor for deter-
mining the morphology and growth kinetics of the Widmanstatten
structure, and other sources of anisotropy might need to be taken
into consideration.

Indeed, the anisotropy of elastic strain energy plays an
important role in the morphology of product precipitates [20],
where the elasticity at interfaces between two solid phases results
from the mismatch of lattice parameters between the product
precipitates and the parent matrix. This is supported by the rele-
vant example that anisotropic and inhomogeneous elasticity has
been observed to greatly change the equilibrium shape of pre-
cipitates in Ni-based alloys [21]. More recently, Cottura et al. [22]
built a phase field model that coupled with the anisotropic elas-
ticity for the growth of the Widmanstatten structure, and their
qualitative simulations suggested that the elastic anisotropy is
enough to engender plate-like microstructures growing at a sta-
tionary rate. As the lattice parameters of austenite and ferrite in a
binary Fe—C alloy are obviously distinct, the optimal growth di-
rections would be affected by the elastic energy during the pro-
cesses of nucleation and growth of Widmanstatten ferrite
precipitates.

In the present study, the roles of the anisotropic elasticity
during the austenite to Widmanstatten ferrite transformation in
binary Fe—C are investigated. We extend the phase field model
proposed by Cottura [22], where the realistic thermodynamic
functions and diffusional mobilities are applied, including the
Gibbs free energy function, lattice parameter, elastic moduli and
diffusional mobility. In particular, the processes of the nucle-
ation and growth of Widmanstatten ferrite and the evolution
kinetics in different directions are analyzed, and various quan-
titative comparisons with experimental observations are
implemented.

2. Phase field model

In this section, a phase field model that couples with elasticity
for the austenite to Widmanstatten-ferrite transformation in a bi-
nary Fe—C alloy is derived.

2.1. Free energy functional

The total free energy is the summation of chemical free energy
and elastic strain energy as:

F:FCh(uC7¢7V¢)+Fel(¢,£) (—1)

where the u-fraction is defined as uc = x¢/(1 — x¢) with the carbon
normal mole fraction x¢ [16], ¢ is the phase field variable taken as 1
in ferrite and 0 in austenite and ¢ is the strain field. The chemical
free energy can be written as:
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where Vi, is the molar volume of substitutional atoms and assumed
to be constant. Gm(uc, ¢) = p(¢)G% (uc) + [1 — p(¢)]G (uc) repre-
sents the Gibbs energy, where G% and G}, denote the normal Gibbs
energy of o and y and are taken from the assessments of Gustafson
based on a Calphad type of thermodynamical description [23,24].
p(¢) = ¢3(6¢2 — 154 + 10) is the interpolation function, which
should satisfy the following requirements: it is a monotonic func-
tion in [0, 1] with p(0) =0 and p(1) =1, and the chemical free
energy density should have two minima in the two bulk phases as
p(9)/0dls—01 = 0. 8(¢) = #%(1 — ¢)? is the double-well potential
function, which guarantees that the free energy density has two
local minima at ¢ = 0 and ¢ = 1. w is a coefficient reflecting the
energy barrier height between the two minima, 4 is an interfacial
energy coefficient and these two parameters are analytically
related to two physical quantities, the interfacial energy
o = +/2w/18 and the interface thickness 6 = \/2/w [19].

Based on the linear elasticity, the elastic strain energy is given by
Ref. [25]:
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where the elastic strain is the difference between the total strain,
el?'(T), and the stress-free strain, 9(T):
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where 58.0 is the eigenstrain corresponding to the precipitate of the
o phase. Eigenstrain, which is also known as stress-free trans-
formation strain (SFTS), represents the strain that occurs inside the
material in the absence of external constraints during phase tran-
sitions. For the Fe—C system, three non-coplanar vectors are chosen
as the axes of a reference coordinate, xi: [100}7H[1 10],,
o [010}4 (T10], and x; : [001]7“[001]a. The lattice correspon-
dences (LC) between the o and y phases based on the Bain orien-
tation relationship in both three and two dimensions are shown in
Fig. 1a and b, respectively. The calculated eigenstrain tensors and
other physical parameters used for calculations are presented in
Table 1 [26].

2.2. Evolution equations

The governing equations based on the Cahn—Hilliard (CH) [27]
and Allen—Cahn (AC) [28] kinetic equations are deduced. The
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