

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

ALLOYS AND COMPOUNDS

Yusuke Iida^a, Kazuhiko Akiyama^a, Balázs Kobzi^b, Katalin Sinkó^b, Zoltán Homonnay^b, Ernő Kuzmann^{b,c}, Mira Ristić^d, Stjepko Krehula^d, Tetsuaki Nishida^e, Shiro Kubuki^{a,*}

^a Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397, Japan

^b Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117, Hungary

^c Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512, Hungary

^d Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia

e Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, lizuka, Fukuoka 820-8555, Japan

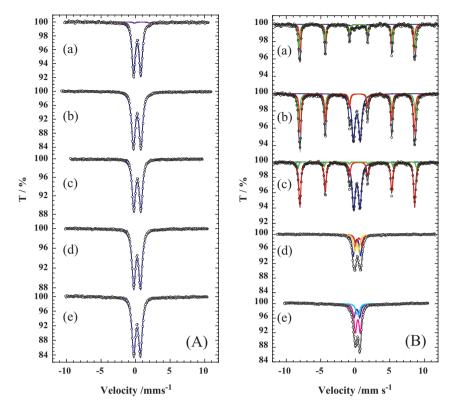
ARTICLE INFO

Article history: Received 19 January 2015 Received in revised form 21 April 2015 Accepted 22 April 2015 Available online 28 April 2015

Keywords: Visible light-activated photocatalyst Hematite Aluminosilicate glass ⁵⁷Fe-Mössbauer spectroscopy

ABSTRACT

A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate ($15Na_2O.15CaO.40Fe_2O_3.xAl_2O_3.(30-x)SiO_2$) glass (xNCFAS) was investigated by means of ⁵⁷Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV-visible light absorption spectroscopy (UV-VIS). The ⁵⁷Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe^{III}(T_d) and two magnetic sextets due to regular hematite (α -Fe₂O₃) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α -Fe₂O₃ and increase of Ca₂Fe₂₂O₃₃ or CaFe₂O₄ with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 µmol L⁻¹ was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 × 10⁻³ min⁻¹. Tauc's plot yielded a band gap energy (E_g) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E_g of 2.2 eV for α -Fe₂O₃. These results prove that addition of Al_2O_3 into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyte with 'ubiquitous' elements.


© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Anatase type of TiO₂ is well known as a photocatalyst which can be only activated by UV light with a wavelength (λ) shorter than 380 nm, due to its high band gap energy (3.2 eV) [1]. The sunlight only contains a few percent of this wavelength. In order to effectively utilize the longer wavelength components of the solar spectrum, visible light-activated photocatalysts are investigated. For example doping the TiO₂ structure with different anionic species such as N and transition metal cations Si, Fe, V, Cr [2,3]. Abbrus et al. reported that 1.0 g L⁻¹ of Fe^{III}-doped TiO₂ decomposed 0.1 mM phenol with the constant rate of 2.07 × 10⁻⁹ s⁻¹ under visible light irradiation [4].

Visible light activated photocatalyst can be prepared from other semiconductor materials as well, with more favorable optical band gap. Hematite $(\alpha$ -Fe₂O₃) is a suitable material, due to its

* Corresponding author. Tel.: +81 042 677 2432. *E-mail address:* kubuki@tmu.ac.jp (S. Kubuki). photocatalytic properties, chemical stability, nontoxicity and natural availability for applications in water splitting and waste-water treatment [5–7]. Different preparation methods were applied in order to optimize the photocatalytic effect. Chen et al. prepared different hematite crystals with nano-particle, nanotube-, and nanorod-like morphologies. MB degradation experiments showed the best 6.4×10^{-3} min⁻¹ rate constant for nano-particles [8]. Cai et al. investigated visible-light photocatalytic activity of mesocrystalline hematite nano plates toward rhodamine B(RhB)[9]. The high surface area resulted in a high rate constant of 2.21×10^{-2} min⁻¹ [9]. RhB degradation depending on the surface area of α -Fe₂O₃ similar nanostructures was also evaluated by Liang et al. [10]. The rate constant was estimated to be 5.46×10^{-3} min⁻¹ for the nano structured α -Fe₂O₃ with the largest surface area [10]. Iron containing materials also can be made with photocatalytic activity, it was reported that Zn_{1-x}Fe_xO [11], Fe-Cu/TiO₂ [12], Fe-WO₃ [7] and Fe-BiVO₄ [13] showed remarkable photocatalytic activity under visible light exposure. These results indicate that Fe plays an important role for visible light-activated photocatalysis.

Fig. 1. 57 Fe-Mössbauer spectra of 15Na₂O·15CaO·40Fe₂O₃·xAl₂O₃·(30-x)SiO₂ samples with 'x' of (a) 0, (b) 5, (c) 10, (d) 15 and (e) 20; those measured before (A) and after (B) heat-treatment at 1000 °C for 100 min.

Table 1

 5^{57} Fe-Mössbauer spectra of 15Na₂O·15CaO·40Fe₂O₃·xAl₂O₃·(30-x)SiO₂ samples with 'x' of 0, 5, 10, 15 and 20.; those measured before (left side) and after (right side) heat-treatment at 1000 °C for 100 min.

Sample <i>x</i>	Before heat-treatment				Sample	After heat-treatment			
	Species	A (%)	$\delta \text{ (mm s}^{-1}\text{)}$	⊿ (mm s ⁻¹)	Species	A (%)	δ (mm s ⁻¹)	⊿ (mm s ⁻¹)	$H_{\rm int}$ (T)
0	$Fe^{III}(T_d)$	97.9	0.24	1.04	$Fe^{III}(T_d)$	8.1	0.23	0.84	-
	$Fe^{II}(T_d)$	2.1	0.95	2.21	$Fe^{3+}(O_h)mag.$	44.8	0.39	-0.20	51.2
					$Fe^{3+}(O_h)mag.$	47.1	0.39	-0.20	52.4
5	$Fe^{III}(T_d)$	100	0.23	1.09	$Fe^{III}(T_d)$	35.6	0.23	0.99	-
					$Fe^{3+}(O_h)mag.$	36.0	0.38	-0.18	51.2
					$Fe^{3+}(O_h)mag.$	28.4	0.39	-0.18	52.5
10	$Fe^{III}(T_d)$	100	0.26	1.02	$Fe^{III}(T_d)$	41.3	0.23	0.90	-
	(4)				$Fe^{3+}(O_h)mag.$	53.0	0.38	-0.18	51.6
					$Fe^{3+}(O_h)mag.$	5.7	0.39	-0.19	53.4
15	$Fe^{III}(T_d)$	100	0.22	0.98	$Fe^{III}(T_d)$	43.9	0.20	0.88	-
	(_/				$Fe^{III}(O_h)$	23.7	0.44	0.73	-
					$Fe^{III}(O_h)$	32.4	0.19	0.49	-
20	$Fe^{III}(T_d)$	100	0.21	0.97	$Fe^{III}(T_d)$	27.6	0.23	0.84	-
	(4)				$Fe^{III}(O_h)$	56.8	0.37	0.70	-
					$Fe^{III}(O_h)$	15.7	0.37	0.31	-

A: absorption area, δ : isomer shift, Δ : quadrupole splitting, H_{int} : internal magnetic field.

Precipitation of α -Fe₂O₃ was confirmed from the ⁵⁷Fe-Mössbauer spectrum of 15Na₂O-15CaO-50Fe₂O₃·20SiO₂ glass heat treated at 1000 °C for 100 min, and a high rate constant (*k*) of 2.87 × 10⁻² h⁻¹ for methylene blue (MB) decomposition was estimated on the basis of the photocatalytic reaction test using heat-treated glass under visible light-irradiation [14]. This result indicated that heat-treated soda lime iron silicate glass shows

visible light-activated catalysis due to the presence of α -Fe₂O₃. And the largest absorption area of α -Fe₂O₃ was confirmed from the ⁵⁷Fe-Mössbauer spectrum (93.1%) of 15Na₂O·15CaO·40Fe₂O₃· 20SiO₂ glass heat treated at 1000 °C for 100 min [14].

Aluminate glass is known as infrared (IR) light-transmitting material having wider optical transparency ranging from visible to infrared region [15]. Due to the high IR light-transmittance Download English Version:

https://daneshyari.com/en/article/1608332

Download Persian Version:

https://daneshyari.com/article/1608332

Daneshyari.com