

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/09258388)

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

AND COMPOUNDS

CrossMark

Yusuke Iida ^a, Kazuhiko Akiyama ^a, Balázs Kobzi ^b, Katalin Sinkó ^b, Zoltán Homonnay ^b, Ernő Kuzmann ^{b,c}, Mira Ristić ^d, Stjepko Krehula ^d, Tetsuaki Nishida ^e, Shiro Kubuki ^{a,}*

a Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397, Japan

^b Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117, Hungary

^c Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512, Hungary

^d Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia

e Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan

article info

Article history: Received 19 January 2015 Received in revised form 21 April 2015 Accepted 22 April 2015 Available online 28 April 2015

Keywords: Visible light-activated photocatalyst Hematite Aluminosilicate glass 57Fe-Mössbauer spectroscopy

ABSTRACT

A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate (15Na₂O·15CaO·40Fe₂O₃·xAl₂O₃·(30-x)SiO₂) glass (xNCFAS) was investigated by means of 57Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV–visible light absorption spectroscopy (UV–VIS). The ⁵⁷Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe^{III}(T_d) and two magnetic sextets due to regular hematite (α -Fe₂O₃) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α -Fe₂O₃ and increase of Ca₂Fe₂₂O₃₃ or $CaFe₂O₄$ with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 μ mol L⁻¹ was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 \times 10⁻³ min⁻¹. Tauc's plot yielded a band gap energy ($E_{\rm g}$) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E_g of 2.2 eV for α -Fe₂O₃. These results prove that addition of Al_2O_3 into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyst with 'ubiquitous' elements.

2015 Elsevier B.V. All rights reserved.

1. Introduction

Anatase type of $TiO₂$ is well known as a photocatalyst which can be only activated by UV light with a wavelength (λ) shorter than 380 nm, due to its high band gap energy (3.2 eV) [\[1\].](#page--1-0) The sunlight only contains a few percent of this wavelength. In order to effectively utilize the longer wavelength components of the solar spectrum, visible light-activated photocatalysts are investigated. For example doping the $TiO₂$ structure with different anionic species such as N and transition metal cations Si, Fe, V, Cr $[2,3]$. Abbrus et al. reported that 1.0 g L^{-1} of Fe^{III}-doped TiO₂ decomposed 0.1 mM phenol with the constant rate of 2.07 \times 10⁻⁹ s⁻¹ under visible light irradiation [\[4\]](#page--1-0).

Visible light activated photocatalyst can be prepared from other semiconductor materials as well, with more favorable optical band gap. Hematite (α -Fe₂O₃) is a suitable material, due to its

⇑ Corresponding author. Tel.: +81 042 677 2432. E-mail address: kubuki@tmu.ac.jp (S. Kubuki).

photocatalytic properties, chemical stability, nontoxicity and natural availability for applications in water splitting and waste-water treatment [\[5–7\]](#page--1-0). Different preparation methods were applied in order to optimize the photocatalytic effect. Chen et al. prepared different hematite crystals with nano-particle, nanotube-, and nanorod-like morphologies. MB degradation experiments showed the best 6.4×10^{-3} min⁻¹ rate constant for nano-particles [\[8\]](#page--1-0). Cai et al. investigated visible-light photocatalytic activity of mesocrys-talline hematite nano plates toward rhodamine B (RhB) [\[9\]](#page--1-0). The high surface area resulted in a high rate constant of 2.21×10^{-2} min⁻¹ [\[9\]](#page--1-0). RhB degradation depending on the surface area of α -Fe₂O₃ similar nanostructures was also evaluated by Liang et al. $[10]$. The rate constant was estimated to be 5.46×10^{-3} min⁻¹ for the nano structured α -Fe₂O₃ with the largest surface area [\[10\].](#page--1-0) Iron containing materials also can be made with photocatalytic activity, it was reported that $\text{Zn}_{1-x}\text{Fe}_x\text{O}$ [\[11\],](#page--1-0) Fe–Cu/TiO₂ [\[12\],](#page--1-0) Fe–WO₃ [\[7\]](#page--1-0) and Fe–BiVO₄ [\[13\]](#page--1-0) showed remarkable photocatalytic activity under visible light exposure. These results indicate that Fe plays an important role for visible light-activated photocatalysis.

Fig. 1. ⁵⁷Fe-Mössbauer spectra of 15Na₂O·15CaO·40Fe₂O₃·xAl₂O₃·(30–x)SiO₂ samples with 'x' of (a) 0, (b) 5, (c) 10, (d) 15 and (e) 20; those measured before (A) and after (B) heat-treatment at 1000 °C for 100 min.

Table 1

 57 Fe-Mössbauer spectra of 15Na2O-15CaO-40Fe $_2$ O₃·xAl $_2$ O₃·(30–x)SiO₂ samples with 'x' of 0, 5, 10, 15 and 20.; those measured before (left side) and after (right side) heattreatment at 1000 °C for 100 min.

Sample	Before heat-treatment				Sample	After heat-treatment				
χ	Species	$A(\%)$	δ (mm s ⁻¹)	\varDelta (mm s ⁻¹)	Species	$A(\%)$	δ (mm s ⁻¹)	\triangle (mm s ⁻¹)	$H_{\text{int}}(T)$	
$\bf{0}$	Fe ^{III} (T _d) $Fe^{II}(T_d)$	97.9 2.1	0.24 0.95	1.04 2.21	Fe ^{III} (T _d) $Fe^{3+}(O_h)$ mag. $Fe^{3+}(O_h)$ mag.	8.1 44.8 47.1	0.23 0.39 0.39	0.84 -0.20 -0.20	51.2 52.4	
5	$Fe^{III}(T_d)$	100	0.23	1.09	Fe ^{III} (T _d) $Fe^{3+}(O_h)$ mag. $Fe^{3+}(O_h)$ mag.	35.6 36.0 28.4	0.23 0.38 0.39	0.99 -0.18 -0.18	51.2 52.5	
10	$Fe^{III}(T_d)$	100	0.26	1.02	Fe ^{III} (T _d) $Fe^{3+}(O_h)$ mag. $Fe^{3+}(O_h)$ mag.	41.3 53.0 5.7	0.23 0.38 0.39	0.90 -0.18 -0.19	$\overline{}$ 51.6 53.4	
15	$Fe^{III}(T_d)$	100	0.22	0.98	Fe ^{III} (T _d) Fe ^{III} (O _h) Fe ^{III} (O _h)	43.9 23.7 32.4	0.20 0.44 0.19	0.88 0.73 0.49	-	
20	$Fe^{III}(T_d)$	100	0.21	0.97	Fe ^{III} (T _d) Fe ^{III} (O _h) Fe ^{III} (O _h)	27.6 56.8 15.7	0.23 0.37 0.37	0.84 0.70 0.31		

A: absorption area, δ : isomer shift, Δ : quadrupole splitting, H_{int} : internal magnetic field.

Precipitation of α -Fe₂O₃ was confirmed from the ⁵⁷Fe-Mössbauer spectrum of 15Na $_2$ O \cdot 15CaO \cdot 50Fe $_2$ O $_3$ ·20SiO $_2$ glass heat treated at 1000 °C for 100 min, and a high rate constant (k) of 2.87×10^{-2} h⁻¹ for methylene blue (MB) decomposition was estimated on the basis of the photocatalytic reaction test using heat-treated glass under visible light-irradiation [\[14\].](#page--1-0) This result indicated that heat-treated soda lime iron silicate glass shows

visible light-activated catalysis due to the presence of α -Fe₂O₃. And the largest absorption area of α -Fe₂O₃ was confirmed from the 57 Fe-Mössbauer spectrum (93.1%) of 15Na₂O·15CaO·40Fe₂O₃. 20SiO₂ glass heat treated at 1000 °C for 100 min [\[14\]](#page--1-0).

Aluminate glass is known as infrared (IR) light-transmitting material having wider optical transparency ranging from visible to infrared region $[15]$. Due to the high IR light-transmittance

Download English Version:

<https://daneshyari.com/en/article/1608332>

Download Persian Version:

<https://daneshyari.com/article/1608332>

[Daneshyari.com](https://daneshyari.com)