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a b s t r a c t

Recently (Starink, 2014) a new model for diffusion-controlled precipitation reactions based on the
extended volume concept was derived. The model leads to an analytical equation describing the relation
between the fraction transformed, a, the reaction time, t, and the reaction exponent, n, as:

a ¼ fexpð�2ðk1tÞnÞ � 1g=ð2ðk1tÞnÞ þ 1

In the present work, new analysis methods are derived which allow determination of the reaction
exponent n. The new methods are applied to analysis of nucleation and it is shown that generally during
a reaction with growth in 3 dimensions there are only 2 modes: either the nucleation rate in the extended
volume is constant or it is negligibly small. A new approach to the interaction of diffusion-controlled
growth and nucleation is proposed to rationalise these findings. The exponential decay of the average
solute content predicted by the new model is further analysed and compared with a range of experimental
data and contrasted with other models. The new model is found to correspond excellently to these solute
decay data.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion-controlled precipitation reactions can be thought of
as the combination of 4 consecutive partially overlapping
processes: nucleation, growth, soft impingement and coarsening.
Substantial data on diffusion-controlled precipitation reactions
has been published and several models have been proposed [1].
Very recently [1] a new model was derived which focusses partic-
ularly on the impingement of diffusion fields. A comparison with of
over 20 sets of transformation vs time data at a wide range of tem-
peratures (40–1500 �C) showed that the new model accurately fits
the data on all reactions, and overall is clearly outperforming all
other models. A key factor in the model is that it derives and
employs an expanded form of the imaginary extended volume con-
cept (see e.g. [2–6]), through applying an integration of impinge-
ment over various extended volumes defined by iso-composition
surfaces [1]. Through this approach the new model avoids the
over-simplification of soft impingement inherent in mean field

approaches such as the Kampmann and Wagner (KW) model
[7–11] and the model by Svoboda and co-workers [12–14].

The main aim of the present paper is to show the consequences
of this new model for analysis of nucleation, and to derive methods
that can be used to analyse the transformation modes of the diffu-
sion-controlled reactions. An ancillary aim is to show, through
these analyses, that the new model is correct, and can form the
basis for a range of analysis methods.

For the full derivation of the model the reader is referred to [1].
Key elements of the model are that depletion in the extended
volume is approximated by linear functions whilst impingement
is treated as occurring in a volume (rather than a surface as in
the approach by Avrami [2] and Kolmogorov [3,4]). (For details
the reader is referred to [1].) Whilst the resulting equations are
straightforward (see below), a graphical representation of the
model is very difficult and the underlying concepts are challenging.
To illustrate the 3 dimensional growth of particles one would need
to represent each particle growing in its own 3 dimensional space
with each point in 3D space having a time dependent composition.
This is not realistically possible. Hence we here attempt to repre-
sent 1 dimensional growth. Fig. 1a shows the composition profile
of one particle shortly after it nucleated. There is one growth

http://dx.doi.org/10.1016/j.jallcom.2015.01.045
0925-8388/� 2015 Elsevier B.V. All rights reserved.

⇑ Tel.: +44 2380595094.
E-mail address: m.j.starink@soton.ac.uk

Journal of Alloys and Compounds 630 (2015) 250–255

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier .com/locate / ja lcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jallcom.2015.01.045&domain=pdf
http://dx.doi.org/10.1016/j.jallcom.2015.01.045
mailto:m.j.starink@soton.ac.uk
http://dx.doi.org/10.1016/j.jallcom.2015.01.045
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jalcom


dimension: along the x axis. To reflect the assumptions in [1] the
composition profile is taken as straight lines. Fig. 1b represents
the system in the extended space/volume1 a short time later; there
are now 2 particles that are growing. As we are formulating the
model in the extended space/volume, each particle is associated with
its own composition profile in the surrounding matrix that is devel-
oping independent of diffusion fields around other particles. Thus in
the extended space/volume each particle grows in its own space,
which is reflected in Fig. 1b and c by a set of graphs each reflecting
one particle.

As time progresses, the diffusion fields around each particle
become wider. Fig. 1c shows the system in the extended volume
at a later time; there are now 4 particles that are growing.
Fig. 1d shows the composition profile in the real space, with
composition profiles determined from the transformation from
extended to real space (as described in [1]). Whilst the straight line
approximation for the composition profiles have introduced an
approximation in the model, the resulting composition profile
(Fig. 1d) is complex and realistic. It is seen that the model avoids
simplifications that have been used in selected other models: par-
ticles are randomly distributed (they are not in equidistant arrays)

and there is no mean field concentration assumption used in
approximating interaction.

In the new model, the fraction transformed, a, is calculated on
the basis of the average amount of solute in the parent phase,
�cðtÞ, i.e. it is calculated as

a ¼ co � �cðtÞ
co � cm

ð1Þ

where cm is the solute concentration at the precipitate/matrix
interface. The results can be described by just 3 basic equations:

a ¼ expð�2aextÞ � 1
2aext

þ 1 ð2Þ

aext ¼
ðktÞn

Vo
ð3Þ

where a is the fraction of material that is transformed, aext is the
extended volume fraction, k is a factor depending on temperature,
t is the time, Vo is the reference volume considered, and n is an
exponent (generally referred to as either the reaction exponent or
the ‘Avrami exponent’). The general equation for n is [15–18]:

n ¼ Ndimg þ B ð4Þ

where g is 1
2 for diffusion-controlled (parabolic) growth, B is 0 in the

case where nucleation ceases very early in the reaction, or 1 for
continuous nucleation (at constant nucleation rate in the extended
volume), Ndim is the dimensionality of the growth. For diffusion-
controlled growth n is thus taken as 1

2, 1 or 1 1
2.

2. Methods for direct determination of n

2.1. Plot slope method

The main equation in the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model
(after [2,3,19], see also [16,20]), a = 1 – exp(�aext), can be readily inverted to
express aext in terms of a. This allows calculation of aext from data on a and allows
plotting lnaext(a) vs ln t. This is the oft employed plot of ln t vs ln(�ln(1 � a)) (some-
times referred to as an ‘Avrami plot’), which allows determination of n from the
slope. (Expressions for selected other models can also be inverted [17,21–23].) This
‘Avrami plot’ method has been applied extensively throughout many works and the
n values thus obtained have been extensively discussed in these works. It would
appear to be an attractive method, because comparison of n determined from the
slope of the plot with Eq. (4) provides information on dimensionality of the growth
and nucleation. Even though this is clearly incorrect for diffusion-controlled
reactions for all but very small values of a, plotting of ln t vs ln(�ln(1 � a)) has been
applied for these reactions. To rectify this situation, and provide a correct means for
determination of n for diffusion-controlled reactions, we will here provide a correct
expression for deriving n from slopes of plots for the case of diffusion-controlled
reactions.

The new model (Eqs. (2)–(4)) does not allow inverting the main expression (Eq.
(2)) to provide a simple expression for aext(a). However, it is possible to derive
highly accurate approximations for this purpose. Through trial and error it was
found that a suitable approximation is

ln aextðaÞ ffi 0:48 lnððð1� aÞ1:8 � 1Þ=� 1:8Þ þ 0:525 lnððð1� aÞ�1:8 � 1Þ=1:8Þ ð5Þ

Analysis of this equation shows that it allows approximation of the local slope
of an lnaext(a) vs ln t plot (which equals n) to within 2.3% for a between 0 and 0.9
(and to within 5% for a between 0 and 0.97)2. The average slope for a between 0.02
and 0.8 equals n to within 0.3%, and the average slope for a between 0.02 and 0.97
equals n to within 0.6%. These levels of variation are generally less than errors and
uncertainties introduced by experimental factors, and hence the above approximation
can be used to analyse experimental data without adding to experimental errors.

2.2. Time range methods

Whilst the plot slope method in the previous section is in many cases the most
accurate and detailed method available for determining n, also faster methods
based on transformation time ratios are possible. These methods are possible
because, just like in the JMAK method, for each pair of fraction transformed the
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Fig. 1. Schematic illustration of the model for 1 dimensional growth. See text for
description. The initial concentration of solute in the alloy is co.

1 The basic concept of and terminology ‘extended volume’ derives from the JMAK
model [2–4]. In this paragraph and Fig. 1 the extended ‘volume’ is illustrated for one
dimension. In this paragraph the ‘volume’ is thus a 1 dimensional ‘space’.

2 A plot of ln t vs ln(a/[1 � a]) is also interesting as the slope equals n at a = 0 and
a = 1. But in rises to 1.23 n at a = 0.7 and hence is less suitable for determination of n.
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