Journal of Alloys and Compounds 620 (2015) 376-382

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Targeted structural changes and magnetic properties study in $(Ho/Er)_5Ga_{3-x}(Co/Fe)_x$

ALLOYS AND COMPOUNDS

Fang Yuan^a, Alex V. Morozkin^b, Yurij Mozharivskyj^{a,*}

^a Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada ^b Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992, Russia

ARTICLE INFO

Article history: Received 14 July 2014 Received in revised form 18 September 2014 Accepted 21 September 2014 Available online 14 October 2014

Keywords: Rare-earth alloys Crystal structure Magnetic transition Magnetocaloric effect

ABSTRACT

Phase transformations in the Ho₅Ga_{3-x}Co_x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1), Er₅Ga_{3-x}Fe_x (x = 0, 0.4), and Er₅Ga_{3-x}Co_x (x = 0, 0.4) system reveal an intimate coupling between the crystal structure and atomic size. A decrease in the effective atomic size of the Ga site through the transition metal substitution results in a transition from the Mn₅Si₃-type structure to Cr₅B₃-type one. According to the single crystal X-ray diffraction, Co and Fe substitution occurs only on the Ga 8*h* site. The relationship between the composition, crystal structures and magnetic properties is analyzed. Magnetization studies for pure Ho₅Ga₃, Ho₅Ga_{2.6}Co_{0.4} phases reveal an antiferromagnetic ordering for Ho₅Ga₃, but ferromagnetic transition for the other phases. In addition, the ferromagnetic transition temperature increases with the Co amount. The maximum magnetic entropy change of -12.7 J/kg K is obtained in Ho₅Ga_{2.6}Co_{0.4} at 32.5 K.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Increasing environmental pressure and limited natural resources urge development of novel, more efficient cooling techniques that can replace conventional vapor-cycle refrigeration. One of the most promising approaches is magnetic refrigeration based on magnetocaloric effect (MCE). However, some important problems have to be addressed prior to the implementation of this technique. One of the most challenging tasks is to achieve large MCE values in relatively small magnetic fields. A breakthrough was the discovery of a giant magnetocaloric effect (GMCE) in $Gd_5Si_2Ge_2$ in 1997 [1]. This material undergoes a first-order coupled magneto-structural transition and the total entropy change includes not only a magnetic entropy contribution, but also a structural one.

The discovery of a GMCE in $Gd_5Si_2Ge_2$ initiated extensive research on the related RE_5T_4 phases (*RE* is a rare earth, *T* is a *p*-element). One of the important outcomes is the possibility to tune the structural and magnetic properties of RE_5T_4 through valence electron concentration (VEC) [2–6]. It was also shown that the VEC stabilization can be applied to other phases, e.g. the non-existing Gd_4Ge_3 binary can be stabilized through a VEC increase [7].

Comparing with the RE_5T_4 series, the magnetic and structural properties of RE_5X_3 (X is Si, Ge, Sn, Sb, Bi) are less systematically

explored, and in general the factors governing their stability and phases transformations are not as well understood. The literature data suggest that both the RE_5X_3 tetralides and pnictides adopt the Mn₅Si₃-type structure, suggesting that neither the VEC nor atomic size itself dictates their stability [8-11] On the other hand, the *RE*₅Ga₃ phases present an interesting case as their structures are governed by the size of the rare earths. The three structures identified for *RE*₅Ga₃ are hexagonal Mn₅Si₃-type, tetragonal Cr₅B₃-type and W₅Si₃-type ones (Fig. 1), and their stability can be summarizes as follows (except for La and Y): (1) a hexagonal Mn₅Si₃-type structure ($P6_3/mcm$) forms for Ho (1.74 Å) and smaller rare-earth atoms; (2) a tetragonal Cr_5B_3 -type structure (I4/mcm) is stable between Dy (1.75 Å) and Nd (1.81 Å); (3) a tetragonal W_5Si_3 -type structure (*I*4/*mcm*) is observed for Pr (1.82 Å) and Ce (1.83 Å); (4) RE_5Ga_3 phases are unknown for Yb (1.94 Å) and Eu (2.00 Å) [12–17]. This structure-atomic size relationship provides a possibility to stabilize a specific structure of RE₅Ga₃ through elemental substitution either on the RE or Ga sites. Since Ho₅Ga₃ and Er₅Ga₃ sit close to the Cr₅B₃-Mn₅Si₃ boundary, a transition between the two structures should be achieved by tuning the average atomic size of the RE or Ga sites.

In our research, we focused on the Ho₅Ga_{3-x}Co_x, Er₅Ga_{3-x}Fe_x, and Er₅Ga_{3-x}Co_x systems as the size difference between Co (Fe) and Ga (r_{Fe} = 1.24 Å, r_{Co} = 1.25 Å and r_{Ga} = 1.26 Å) is comparable to that between the rare-earth elements (r_{Er} = 1.73 Å, r_{Ho} = 1.74 Å and r_{Dy} = 1.75 Å) and, in principle, should allow structural tuning.

^{*} Corresponding author.

Fig. 1. Structural map for *RE*₅Ga₃ phases.

Table 1

Structure types of the major phase in $Ho_5Ga_{3-x}Co_x$, $Er_5Ga_{3-x}Fe_x$, and $Er_5Ga_{3-x}Co_x$.

Sample	Treatment	Str. type of major phase	
Ho ₅ Ga ₃	Cast Annealed	Mn₅Si₃ Ba₅Si₃	
$Ho_5Ga_{2.9}Co_{0.1}$	Cast Annealed	Mn5Si3 Ba5Si3	
$Ho_5Ga_{2.8}Co_{0.2}$	Cast Annealed	$Mn_5Si_3 + Cr_5B_3$ $Cr_5B_3 + impurity/ies$	
$Ho_5Ga_{2.7}Co_{0.3}$	Cast Annealed	$\begin{array}{l} Mn_5Si_3 + Cr_5B_3 \\ Cr_5B_3 \end{array}$	
$Ho_5Ga_{2.6}Co_{0.4}$	Cast Annealed	$\begin{array}{l} Mn_5Si_3 + Cr_5B_3 \\ Cr_5B_3 \end{array}$	
$Ho_5Ga_{2.5}Co_{0.5}$	Cast Annealed	$Mn_5Si_3 + Cr_5B_3$ $Cr_5B_3 + impurity/ies$	
Ho₅Ga ₂ Co	Cast Annealed	$Mn_5Si_3 + Cr_5B_3$ $Cr_5B_3 + impurity/ies$	
Er ₅ Ga ₃	Cast Annealed	Mn5Si3 + impurity/ies Ba5Si3	
$Er_5Ga_{2.6}Fe_{0.4}$	Cast Annealed	$\begin{array}{l} Mn_5Si_3 + Cr_5B_3 \\ Cr_5B_3 \end{array}$	
Er ₅ Ga _{2.6} Co _{0.4}	Cast Annealed	Mn ₅ Si ₃ Cr ₅ B ₃ + impurity/ies	

Additionally, the RE_5Ga_3 phases order antiferromagnetically or remain paramagnetic [14,17,29], which makes them unsuitable for magnetic refrigeration. Through the Co or Fe substitution, we aimed to change the ground magnetic state into a ferromagnetic one. In this work, we reported on the successful stabilization of the Cr₅B₃-type structure in Ho₅Ga₃ and Er₅Ga₃ via Co and Fe substitution. We also presented magnetic properties of newly discovered Ho₅Ga_{3-x}Co_x series and MCE of Ho₅Ga₂₋₇Co_{0.3} and Ho₅Ga_{2.6}Co_{0.4} phases with the Cr₅B₃-type structure.

2. Experimental section

2.1. Synthesis

The starting materials were pieces of holmium and erbium (99.9+ wt.%, distilled grade, Metall Rare Earth Limited, China), cobalt (99.9 wt.%, Alfa Aesar), iron (99.9 wt.%, Alfa Aesar) and gallium (99.9999 wt.%, Alfa Aesar). The surface of Ho and Er metal lumps were cleaned with a file before they were cut into pieces. The Ho₅Ga_{3-x}Co_x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1), Er₅Ga_{3-x}Fe_x, and Er₅Ga_{3-x}Co_x (x = 0, 0.4) samples were arc-melted at least three times to improve the homogeneity. The cast samples were wrapped in individual Ta foils, sealed in evacuated silica tubes and annealed at 900 °C for 1 week to improve crystallinity and homogeneity. The tubes were then quenched in cold water.

2.2. X-ray powder diffraction

Powder X-ray diffraction (XRD) data for the Ho₅Ga_{3-x}Co_x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1), Er₅Ga_{3-x}Fe_x, and Er₅Ga_{3-x}Co_x (x = 0, 0.4) samples were collected on a PANalytical X'Pert Pro diffractometer equipped with a linear X'Celerator detector and using the Cu Kα1 radiation. The phase analysis and lattice constant refinement were carried out through the Rietveld refinement using the *Rietica* program. [18] The cast Ho₅Ga₃ and Ho₅Ga_{2.9}Co_{0.1} samples contained Mn₅Si₃-type phases, however annealing at 900 °C yielded the Ba₅Si₃-type phase and unknown impurity/ies. All the other cast Ho-containing samples were found to be mixture of both Mn₅Si₃-type phases only for the Ho₅Ga_{2.7}Co_{0.3} and Ho₅Ga_{2.6}Co_{0.4} samples. The cast Er₅Ga₃ was a mixture of the Mn₅Si₃-type phases and unknown impurity/ies. The cast Er₅Ga_{2.6}Co_{0.4} and Er₅Ga_{2.6}Fe_{0.4} had both Mn₅Si₃-type (main phase) and Cr₅B₃-type phases. After annealing at 900 °C for 1 week, a pure Cr₅B₃-type phase was obtained in Er₅Ga_{2.6}Co_{0.4} (Table 1).

Based on the phase analysis, five high-purity samples were obtained: cast Ho_5Ga_3 and $Ho_5Ga_{2,9}Co_{0,1}$, annealed $Ho_5Ga_{2,7}Co_{0,3}$, $Ho_5Ga_{2,6}Co_{0,4}$ and $Er_5Ga_{2,6}Fe_{0,4}$. The unit cell dimensions derived from the Rietveld refinement (*Rietica* program [18]) for these samples are summarized in Table 2. The lattice parameters decrease upon the transition metal substitution due to the atomic size difference between Ga and Co/Fe.

2.3. X-ray single-crystal diffraction

Single crystal X-ray diffraction studies were performed on the crystals extracted from the cast Ho₅Ga₃, annealed Ho₅Ga_{2.6}Co_{0.4}, Er₅Ga_{2.6}Co_{0.4} and Er₅Ga_{2.6}Fe_{0.4} samples. Room-temperature data were collected on a STOE IPDSII diffractometer with Mo K α radiation and in the full reciprocal sphere. Numerical absorption correction was based on the crystal shapes that was originally derived from optical face indexing, but later optimized against equivalent reflections using the STOE X-shape software [19]. Structure refinements were performed using the SHELXL program [20]. Crystallographic data and refinement results are summarized in Tables 3 and 4. The structure types obtained from single crystal solution agree well with the results of powder X-ray diffraction.

2.4. Electron probe microanalysis

The quantitative elemental analysis of Ho₅Ga_{2.6}Co_{0.4} was performed with an INCA-Energy-350 X-ray EDS spectrometer (Oxford Instruments) on the Jeol JSM-6480LV scanning electron microscope (20 kV accelerating voltage, beam current 0.7 nA and beam diameter 50 μ m). Signals averaged over three points per phase had estimated standard deviations of 1 at.% for Ho (measured by *L*-series lines), Co, and 5 at.% for Ga (measured by *K*-series lines).

2.5. Magnetometry

Magnetic measurements were performed using a Superconducting Quantum Interference Device (SQUID) on the Magnetic Property Measurement System (MPMS) magnetometer. Magnetization in a field-cooled (FC) mode for the polycrystalline Ho₅Ga₃ (cast), Ho₅Ga_{2.9}Co_{0.1} (cast), Ho₅Ga_{2.7}Co_{0.3} (annealed) and Ho₅Ga_{2.6}Co_{0.4} (annealed) samples was measured in the 100 Oe field from 300 to 5 K. Magnetization of other samples was not measured because of the significant amounts of secondary phases. Maxima in the derivatives of the magnetization with respect to temperature were taken as Curie (T_c) temperatures. The cusp temperature of Ho₅Ga₃ (cast). Weiss temperature (θ_p) and effective magnetic moment per formula unit (μ_{eff}) were obtained by fitting the paramagnetic data to the Curie–Weiss law. The magnetocaloric effect for Ho₅Ga_{2.7}Co_{0.3} and Ho₅Ga_{2.6}Co_{0.4} was evaluated from the magnetization vs. field (M vs. H) curves measured around the ordering temperature with 5 K steps. The magnetic field changed from 0 to 50 kOe in 2 kOe steps.

Table 2

Crystallographic data for the ${\rm Ho}_5{\rm Ga}_{3-x}{\rm Co}_x$ and ${\rm Er}_5{\rm Ga}_{2.6}{\rm Fe}_{0.4}$ samples determined from the powder X-ray diffraction.

Composition	Treatment	Str. type	a (Å)	c (Å)	$V(Å^3)$
Ho_5Ga_3	Cast	Mn ₅ Si ₃	8.5403(1)	6.4151(2)	405.21(1)
$Ho_5Ga_{2.9}Co_{0.1}$	Cast	Mn ₅ Si ₃	8.5339(1)	6.4086(1)	404.200(3)
$Ho_5Ga_{2.7}Co_{0.3}$	Annealed	Cr ₅ B ₃	7.5753(1)	13.8844(3)	796.76(2)
$Ho_5Ga_{2.6}Co_{0.4}$	Annealed	Cr ₅ B ₃	7.5674(1)	13.8514(6)	793.21(4)
$Er_5Ga_{2.6}Fe_{0.4}$	Annealed	Cr ₅ B ₃	7.5360(1)	13.8731(5)	787.88(4)

Download English Version:

https://daneshyari.com/en/article/1610191

Download Persian Version:

https://daneshyari.com/article/1610191

Daneshyari.com