Journal of Alloys and Compounds 618 (2015) 115-119

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Phase formation characteristics and magnetic properties of bulk Ni₂MnGe Heusler alloy

ALLOYS AND COMPOUNDS

瘤

U. Adem^{a,*}, I. Dincer^a, S. Aktürk^b, M. Acet^c, Y. Elerman^a

^a Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara, Turkey ^b Department of Physics, Faculty of Sciences and Letters, Muğla University, 48000 Kötekli, Muğla, Turkey

^c Experimental Physics, Duisburg-Essen University, 47048 Duisburg, Germany

ARTICLE INFO

Article history: Received 21 July 2014 Accepted 15 August 2014 Available online 26 August 2014

Keywords: Heusler alloys Ni₂MnGa Magnetocaloric effect Martensitic phase transitions

ABSTRACT

We have systemically studied the effects of annealing temperature and alloy composition on the structural and magnetic properties of bulk Ni₂MnGe and Ni_{2.1}Mn_{0.9}Ge Heusler alloys. We have observed that both annealing temperature and the alloy composition drastically alter the phases found in the samples due to the presence of competing ternary phases. Annealing at 900 and 950 °C for both alloy compositions facilitate the formation of L2₁ Heusler phase. Nevertheless, formation of Ni₅Mn₄Ge₃ and Ni₁₆Mn₆Ge₇ phases cannot be prevented for Ni₂MnGe and Ni_{2.1}Mn_{0.9}Ge alloys, respectively. In order to estimate the magnetic contribution of the Ni₅Mn₄Ge₃ alloy. Antiferromagnetic nature of Ni₅Mn₄Ge₃ with low magnetization response allows us to reveal the magnetic response of the stoichiometric bulk Ni₂MnGe. Bulk Ni₂MnGe shows simple ferromagnetic behavior with a Curie temperature of 300 K, in agreement with the previous results on thin films. Despite the divergence of magnetization curves between field cooled (FC) and field heated (FH) modes, stoichiometric Ni₂MnGe alloy does not undergo a martensitic phase transition based on our variable temperature X-ray diffraction experiments.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ni–Mn based Heusler alloys constitute a prime family of compounds that have been studied extensively due to the presence of a magnetostructural phase transition which makes them useful for magnetic refrigeration and magnetic shape memory applications such as actuators [1–3]. Upon cooling, Ni–Mn–Z (where Z = Ga, In, Sn, Sb) undergo a phase transition into a martensitic phase. Only for Ni₂MnGa phase, martensitic phase transition occurs for the stoichiometric Heusler composition in the ferromagnetic state. Associated with the first order martensitic phase transition, (magnetic) shape memory effects are observed in these alloys. Magnetic and structural phase transition temperatures can be tailored to yield large caloric effects, which makes them useful for magnetic refrigeration applications [1].

Despite the abundance of studies on other Heusler compositions, there have been relatively few studies on Ni₂MnGe both in bulk and thin film form. Lund et al. have reported the growth of thin films of Ni₂MnGe using Molecular Beam Epitaxy (MBE) and obtained ferromagnetic films with a Curie temperature of 300 K [4]. Kim et al. have grown Ni₂MnGe films using flash evaporation. Their films were ferromagnetic with a Curie temperature of 280 K [5]. Only Oksenenko et al. have reported the structural and magnetic properties of stoichiometric bulk Heusler composition Ni₂MnGe [6]. They could not obtain a pure Heusler phase and observed complex magnetization behavior accordingly. Si et al. synthesized bulk Ni_{2.1}Mn_{0.9}Ge and Ni₂₂Mn_{0.8}Ge [7]. They claimed to obtain pure off-stoichiometric Heusler phase. Their magnetic measurements show a simple ferromagnetic behavior with an ordering temperature $T_{\rm C}$ of 246 K for Ni_{2.1}Mn_{0.9}Ge and 151 K for Ni₂₂Mn_{0.8}Ge.

The key property that renders other Ni–Mn based Heusler alloys useful for applications is the presence of a first-order martensitic phase transition from high temperature L2₁ phase to a low temperature martensite phase [1]. Zayak et al. predicted an instability of L2₁ structure in Ni₂MnGe alloys using first-principles calculations but this has not been observed so far [8]. Recently, there has been another prediction [9], suggesting the likelihood of a transition from the cubic austenite phase to a tetragonal martensite phase. We have undertaken a systematic study to clarify the structural and magnetic properties of stoichiometric bulk Ni₂MnGe and to address the martensitic phase transition predictions. In addition to the stoichiometric composition, we have also synthesized Ni_{2.1}Mn_{0.9}Ge alloy, in order to reproduce the pure L2₁ Heusler

^{*} Corresponding author.

phase claimed in ref. [7]. Another off-stoichiometric sample with the determined composition of Ni_{1.91}Mn_{0.94}Ge_{1.15} was also used to study the effect of Ni off-stoichiometry and demonstrate the effect of annealing temperature. We have observed that annealing temperature and alloy composition significantly affect the phases encountered in the alloys. Finally, we show the lack of a martensitic phase transition using variable temperature X-ray diffraction experiments.

2. Experimental

Ni2MnGe, Ni2.1Mn0.9Ge, Ni5Mn4Ge3 and Ni1.91Mn0.94Ge1.15 alloys were synthesized by arc-melting the constituting elements under Ar atmosphere using an Arc Melter. The allovs were melted 5 times to assure melt homogeneity. Ni₂MnGe and Ni2.1Mn0.9Ge alloys were annealed first at 900 °C for 3 days in order to reproduce the synthesis conditions in ref. [7] and then subsequently annealed at 950 °C for 4 days to see the effects of higher temperature on the stability of phases. Ni₅Mn₄Ge₃ alloy was annealed at 800 °C for 6 days following Ref. [10]. Ni_{1.91}Mn_{0.94-} $Ge_{1.15}$ was annealed at 800 °C for a week and then subsequently annealed at 950 °C for another week. Annealing was done with samples closed in quartz tubes under Ar atmosphere and alloys were quenched in ice water. Composition of the alloys were checked using Energy Dispersive X-ray Spectroscopy(EDS) with a Zeiss EVO 40 Scanning Electron Microscope (SEM). Crystal structure of the alloys were determined using X-ray diffraction experiments with a Rigaku D-Max 2200 diffractometer with Mo K-alpha radiation at room temperature. Variable temperature X-ray diffraction experiments were carried out using a Rigaku Smartlab diffractometer having a Cu K-alpha source equipped with a commercial temperature attachment, between 83 and 573 K. Le Bail fits to the X-ray diffraction data were done using GSAS software package [11]. Magnetization of the samples were measured in a MPMS magnetometer between 10 and 380 K.

3. Results and discussion

Fig. 1 shows the Le Bail fit of the X-ray diffraction data of the stoichiometric Ni₂MnGe alloy annealed at 900 °C for 3 days collected at room temperature. All peaks can be indexed with Heusler L2₁ phase with the space group Fm–3m and Ni₅Mn₄Ge₃ impurity phase. Ni₅Mn₄Ge₃ is reported to crystallize in hexagonal P6₃/mmc space group [10]. Lattice parameters from the Le Bail fit were obtained as *a* = 5.8224(4) Å for the cubic Ni₂MnGe phase and *a* = 4.9288(9) Å and *c* = 7.680(3) Å for the Ni₅Mn₄Ge₃ phase, respectively. Upon further annealing at 950 °C for 4 days, Ni₅Mn₄Ge₃ peaks lose their intensity (shown in the inset of Fig. 1), however a pure Ni₂MnGe phase cannot be obtained.

In Fig. 2(a), Backscattered Electron (BSD) image of Ni_2MnGe alloy is shown. There are thin dark regions within the lightly colored matrix. Point analysis from dark regions show a stoichiometry

Fig. 1. X-ray diffraction pattern of Ni₂MnGe sample annealed at 900 °C for 3 days. Black ticks denote L2₁ Heusler peaks whereas red ticks show Ni₅Mn₄Ge₃ impurity phase. Observed data is red, calculated is in green and the difference is in pink. The inset shows a comparison of the diffraction patterns corresponding to the sample annealed at 900 °C and subsequently at 950 °C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

close to $Ni_5Mn_4Ge_3$ in agreement with the XRD data. Neighbouring lightly colored regions show stoichiometric Ni_2MnGe composition (Table 1).

Le Bail fit of the X-ray diffraction data of Ni_{2.1}Mn_{0.9}Ge annealed at 900 °C shown in Fig. 3 can be indexed using a mixture of L2₁ Ni₂MnGe Heusler phase together with Mn₆Ni₁₆Ge₇. Mn₆Ni₁₆Ge₇ phase is cubic with the space group Fm–3m [10]. Refined lattice parameters were a = 5.7881(5) Å and a = 11.4164(6) Å for Ni₂MnGe and Mn₆Ni₁₆Ge₇, respectively. Further annealing at 950 °C does not change the stability of the phases.

In Fig. 2(b), BSD image of $Ni_{2.1}Mn_{0.9}Ge$ alloy is shown. Unlike the case in Ni_2MnGe composition, no dark and lightly colored regions could be observed, therefore the presence of a second phase with $Mn_6Ni_{16}Ge_7$ stoichiometry could not be verified. On the other hand, elemental analysis from a large area showed that the target composition has been obtained (Table 1).

In Fig. 4, we show the temperature dependence of magnetization of Ni₂MnGe, Ni_{2.1}Mn_{0.9}Ge and Ni₅Mn₄Ge₃ samples measured at 50 Oe. Sharp increase in magnetization in both FC and FH modes define the ferromagnetic Curie temperature as 300 K for Ni₂MnGe and 320 K for Ni_{2.1}Mn_{0.9}Ge. There is divergence between FC and FH modes, hinting the possibility of the presence of a first order martensitic phase transition. In order to quantify the contribution of Ni₅Mn₄Ge₃ impurity to the magnetic behavior of Ni₂MnGe, a

Fig. 2. Backscattered Electron (BSD) SEM images of (a) Ni₂MnGe alloy, annealed at 900 °C for 3 days. Figure shows a zoomed-in region where dark colored Ni₅Mn₄Ge₃ phase can be seen, surrounded by the lighter colored regions of Ni₂MnGe phase, (b) Ni_{2.1}Mn_{0.9}Ge alloy, annealed at 900 °C for 3 days. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1610333

Download Persian Version:

https://daneshyari.com/article/1610333

Daneshyari.com