ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

The effect of electron cloud expansion on the red luminescence of Sr₄Al₁₄O₂₅:Mn⁴⁺ revealed by calculation of the Racah parameters

Lei Chen ^{a,*}, Xiaorong Deng ^a, Erlong Zhao ^a, Xiuling Chen ^a, Shaochan Xue ^a, Wenqiang Zhang ^a, Shifu Chen ^{b,*}, Zhi Zhao ^c, Wenhua Zhang ^d, Ting-Shan Chan ^e

- ^a School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- ^b Department of Chemistry, Anhui Science and Technology University, Fengyang 233100, China
- ^c Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- ^d National Synchrotron Radiation Laboratory, University of Science and Technology, Hefei 230026, China
- ^e National Synchrotron Radiation Research Center, HSinchu 30076, Taiwan, ROC

ARTICLE INFO

Article history: Received 22 January 2014 Received in revised form 31 May 2014 Accepted 5 June 2014 Available online 14 June 2014

Keywords: Luminescence Sr₄Al₁₄O₂₅: Mn⁴⁺ Crystal field The nephelauxetic effect The Racah parameters

ABSTRACT

In this work, the crystal field stabilization energy (D_q) and the Racah B and C parameters were calculated quantitatively to evaluate the nephelauxetic effect of Mn⁴⁺ suffering from the Sr₄Al₁₄O₂₅ host, aiming for developing novel highly efficient red phosphor for white light-emitting diodes. The phosphor of Mn⁴⁺ activated Sr₄Al₁₄O₂₅ was synthesized via a high temperature solid reaction in air ambient. The crystallinity was investigated using the X-ray diffraction; and the photoluminescence properties were characterized with the spectrometer. The red emission was attributed to the Mn⁴⁺ which occupies the center of AlO₆ octahedron. Meanwhile, the Mn²⁺ and Mn³⁺ were detected by using the X-ray absorption near-edge structure spectroscopy (XANES) assisted with Electron Paramagnetic Resonance (EPR) techniques. The energy levels of 4A_2 , ${}^4T_{2g}$ and ${}^4T_{1g}$ were determined according to excitation spectra, corresponding to the ${}^4\!A_2(t_2{}^3) \rightarrow {}^4\!T_1({}^4\!F)$ and the ${}^4\!A_2(t_2{}^3) \rightarrow {}^4\!T_{2g}(t_2^2\!e)$ transitions at 330 and 450 nm respectively, whereby the calculation was carried out according to the Tanabe–Sugano diagram for octahedral complex with the d^3 electron configuration. The nephelauxetic ratio β about 0.32 suggests a strong cloud expansion of Mn⁴⁺ in the Sr₄Al₁₄O₂₅ crystal lattice with $D_q \sim 2222 \text{ cm}^{-1}$, $B \sim 794 \text{ cm}^{-1}$, $C \sim 3232 \text{ cm}^{-1}$ and $C/B \sim 4.07$. In the perspective of physics, these parameters are helpful to perceive the inter-repulsion of the outer electrons in 3d orbit of Mn⁴⁺ and the effect of local circumstance, in essential to understand the variant spectral configurations of Mn⁴⁺ luminescence observed in different hosts.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The white light-emitting diodes (WLEDs) show superiorities in terms of low energy consumption, high luminescence efficiency, eco-friendship without mercury pollution, long duration, unbreakable (in contrast to glass bulbs and tubes) with solid-state encapsulation, and easy transportation and installation over than traditional incandescent and fluorescent lamps, while the red phosphor is essential to obtain warm white light with high color rendering index (CRI) and low color temperature for home lighting [1–6]. The phosphor activated by Mn⁴⁺ is a promising candidate for WLEDs application, because the narrow lines of Mn⁴⁺ emission could enhance the luminous efficacy of radiation (LER) and the

CRI given in units of lumens per watt of radiometric power (lm/Wrad) [7].

Recently, several researchers have focused on the development of new phosphors activated by Mn^{4+} , such as the fluorides of $K_2TiF_6:Mn^{4+}$ [7], $K_2SiF_6:Mn^{4+}$ [7], $Na_2SnF_6:Mn^{4+}$ [8], $Cs_2SnF_6:Mn^{4+}$ [8], $Na_2SiF_6:Mn^{4+}$ [9], and $Na_2GeF_6:Mn^{4+}$ [9] as well as the aluminates of $Sr_4Al_{14}O_{25}:Mn^{4+}$ [10], $CaAl_{12}O_{19}:Mn^{4+}$ [11], and the Mn^{4+} activated non-stoichiometric $3SrO.5AL_2O_3$ [12]. A WLED device with high CRI (Ra 90), warm-white color temperature (3088 K), and an efficiency approximate 82 lm/W has been fabricated by the scientists in the GE Global Research Centre in New York, using the Mn^{4+} activated red phosphor of $K_2TiF_6:Mn^{4+}$ [7]. Chen et al. demonstrated a white LED device prototype with chromaticity CIE (0.3291,0.3571), correlated color temperature 5639 K, CRI Ra 92.6, and an efficiency 63 lm/W using the Mn^{4+} activated non-stoichiometric $3SrO.5AL_2O_3$ and also proposed that such kind of red phosphor is suitable to package low-power WLEDs for application

^{*} Corresponding authors.

E-mail addresses: chichengfeiyang@aliyun.com (L. Chen), chshifu@chnu.edu.cn (S. Chen).

in special circumstances with critical requirement on color rendering, such as jewelry and cosmetic sales, due to its 1 A grade (Ra 90–100) of color rendering ability [13].

Compared with the ionic nature of Metal-Fluoride (M-F) bonds, the aluminate host with strong covalence and weak polarizability are favorable to obtain red luminescence due to its strong nephelauxetic effect in decreasing the centroid of excited states, which will be helpful to obtain red luminescence. In addition, the oxide host of aluminates is very inexpensive. It will helpfully contribute to the popularization of WLEDs. However, the luminescence efficiency of the Mn⁴⁺ activated aluminates, such as Sr₄Al₁₄O₂₅:Mn⁴⁺ and CaAl₁₂O₁₉:Mn⁴⁺, still needs to be enhanced [10–14]. The relative luminescence intensity of CaAl₁₂O₁₉:Mn⁴⁺ was enhanced about two times by doping 0.67 mol% CaF2 and 0.7 mol% MgF2, and the enhancement was attributed to the synergetic effect of flux and charge compensation by CaF2 and MgF2, respectively: CaF2 would accelerate the crystal growth of CaAl₁₂O₁₉:Mn⁴⁺ and Mg²⁺ ions would compensate the local charge balance surrounding Mn⁴⁺ ions instead of Mn²⁺ [11]. Nevertheless, both Mg²⁺ and Mn^{2+} have the +2 valence. The reason why does the replacement of the Mn²⁺ by Mg²⁺ could improve the luminescence was not elucidated. The mechanism of the enhanced luminescence of Sr₄Al₁₄O₂₅:Mn⁴⁺ by coupling with a certain amount of SrAl₂O₄ phase in the non-stoichiometric 3SrO·5AL₂O₃ still was not clear [14].

Moreover, the spectral configuration of Mn⁴⁺ in the host of Sr₄Al₁₄O₂₅ significantly distinguishes from those reported in the K₂TiF₆ [7], K₂SiF₆ [7], Na₂SnF₆ [8], Cs₂SnF₆ [8], Na₂SiF₆ [9], Na₂GeF₆ [9], CaAl₁₂O₁₉ [11], and YAlO₃ [15]. A broad band with doublet peaks are observed in the emission spectrum of Sr₄Al₁₄O₂₅:Mn⁴⁺ at room temperature, but several satellite peaks are observed in the others [7–15]. Besides the thermal vibration caused by the temperature, the spectral configuration is finally determined by the electronic effect and electro-magnetic interaction of the activator suffering from a certain crystal circumstance, depending on the symmetry of crystal site. When an atom has more than one electron there will be certain electrostatic repulsion between those electrons, and the amount of repulsion depends on the number and the spin of electrons and the orbitals they occupy [16–19]. The total repulsion is expressed in terms of three parameters A, B and C, known as the Racah parameters after Giulio Racah, who first described them [16–19]. The nephelauxetic effect, originating from the Greek known for cloud-expanding, refers to a decrease in the Racah interelectronic repulsion parameter, given the symbol B and C, which occurs when a transition metal free ion forms a complex with ligands [16-19]. The decrease in B indicates that in a complex there is less repulsion between the two electrons in a given doubly occupied metal d-orbital than there is in the respective M^{n+} gaseous metal ion, in turn implying that the size of the orbital is larger in the complex [16-19]. In order to understand the abovementioned phenomena, in this work we make an effort to evaluate the nephelauxetic effect on the spectral configuration of Sr₄Al₁₄O₂₅:Mn⁴⁺. The Racah B and C parameters and the crystal-field parameter Δ , which equates about $10D_q$, are calculated quantitatively according to the Tanabe-Sugano diagram for octahedral complex with the d^3 electron configuration. The different valences of Mn ions existed in the Sr₄Al₁₄O₂₅ host are discerned out by using the Electron Paramagnetic Resonance (EPR) and the X-ray absorption near-edge structure (XANES) spectroscopy techniques.

2. Experimental

The phosphor of $Sr_4(Al_{0.999}Mn_{0.001})_{14}O_{25}$ (abbreviated as $Sr_4Al_{14}O_{25}:Mn$) was synthesized via a solid-state reaction at 1300 °C for 16 h in the air ambient from the sources of $SrCO_3$ (99.9%), $MnCO_3$ (99.9%), Al_2O_3 (99.9%), and AlF_3 , where the AlF_3 was adopted as a flux. The concentration of Mn was kept at 0.001 M with respect to Al. The amount of AlF_3 was about 2.5% of total weight. The crystallinity

of phosphors was examined with X-ray diffraction (XRD) analysis by using the Rigaku D/max-IIIA diffractometer with Cu Ka radiation, operated at 45 kV and 40 mA. Emission and excitation spectra were collected by using a Hitachi F-4600 spectrometer. The Mn K-edge (XANES) spectroscopies were recorded at National Synchrotron Radiation Research Center (NSRRC) in Taiwan and National Synchrotron Radiation Laboratory (NSRL) of China successively. All spectra of XANES were normalized and the standard Mn metal foils and oxide powders, MnO, Mn₂O₃ and MnO₂ were used for energy calibration and also for comparing different electronic valence states. The EPR spectra were measured by using the JES-FA200 spectrometer (JEOL).

3. Results and discussion

The dominant X-ray diffraction peaks of the crystal $Sr_4Al_{14}O_{25}$ can be identified clearly from the XRD patterns of $Sr_4Al_{14}O_{25}$:Mn, as displayed in Fig. 1, by comparing with the standard JCPDS 52-1876 [20]. The emission spectrum of the phosphor excited with 450 nm at room temperature is presented in Fig. 2, in which a broad band with doublet peaks at 652 and 665 nm are observed. The inserted picture in Fig. 2 shows the red luminescence of the $Sr_4Al_{14}O_{25}$:Mn under the excitation of 365 nm. By monitoring the emission peaks at 652 and 665 nm, the excitation spectra of the $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and (b), respectively, in which a main band peaked at 330 nm and a minor one peaked 450 nm are observed. The satellite lines of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and (b) and $Sr_4Al_{14}O_{25}$:Mn are observed at 330 nm and a minor one peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and (b) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and (b) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and (b) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and 3(b) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and 3(b) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) and 3(b) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) are peaked 450 nm are observed in the fluorides of $Sr_4Al_{14}O_{25}$:Mn are presented in Fig. 3(a) are peaked 450 nm are peaked 450 nm are peaked 450 nm are peaked 450 nm are peaked 450

During high-temperature sintering process in air, the raw material of MnCO₃ will decompose into MnO₂ or other oxides. However, the previous research demonstrated that the Mn²⁺ existed in CaAl₁₂O₁₉ [11]. So, the multiple valences of Mn ions may also exist in Sr₄Al₁₄O₂₅. Before assigning the excitation and emission spectra in Figs. 2 and 3, the valence of Mn should be determined. The chemical shift of the main absorption edge to lower energies with a decreasing valence of transition metals is a powerful tool for probing the unknown valence of a transition metal [21]. As for Mn ions, the main absorption of X-ray is the K-edge. Herewith, we investigate the valences of Mn ions by using the XANES technique firstly. Fig. 4 displays the normalized Mn K-edge XANES spectra of the Sr₄Al₁₄O₂₅:Mn phosphor and reference samples, MnO, Mn₂O₃ and MnO₂, in which a dashed line at the half absorption value has been included to elucidate the chemical shift [21]. The comparison of the K-edge XANES of the Sr₄Al₁₄O₂₅:Mn phosphor with the MnO₂, Mn₂O₃ and MnO reference samples shows that the valence of Mn ions in phosphor mainly is the +4. However, the minor difference in absorption edge and the significant difference in absorption intensity suggest that a tiny of Mn²⁺ or Mn³⁺ should exist. To clarify this point, the sample is further studied by using the EPR technique. Fig. 5 presents the EPR spectra of the

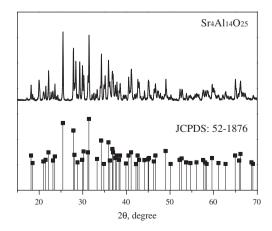


Fig. 1. The XRD patterns of the $Sr_4Al_{14}O_{25}$:Mn phosphor compared with the standard JCPDS 52-1876.

Download English Version:

https://daneshyari.com/en/article/1610670

Download Persian Version:

https://daneshyari.com/article/1610670

<u>Daneshyari.com</u>