Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Superconductivity in LaPd₂As₂ with a collapsed 122 structure

Subodh Ganesanpotti a,b, Takeshi Yajima a,c, Kousuke Nakano a, Yasumasa Nozaki a, Takafumi Yamamoto a, Cédric Tassel ^{a,d}, Yoji Kobayashi ^a, Hiroshi Kageyama ^{a,*}

- ^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ^b Department of Physics, University of Kerala, Thiruvananthapuram 695 581, India
- ^c Institute for Solid State Phsyics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- ^d The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302, Japan

ARTICLE INFO

Article history: Received 13 September 2013 Received in revised form 8 June 2014 Accepted 9 June 2014 Available online 18 June 2014

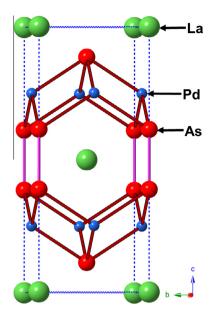
Keywords: Superconductivity LaPd₂As₂ Collapsed tetragonal structure

ABSTRACT

The superconducting properties of LaPd₂As₂ with a collapsed tetragonal structure are reported. DC magnetization and resistivity measurements reveal that the compound is a type-II bulk superconductor below 1 K. The electronic specific heat coefficient γ is found to be 5.56 mJ mol⁻¹ K⁻². The specific heat change at the superconducting transition is 1.17, which is relatively low compared to the BCS weak coupling limit of 1.43. The density of states at the Fermi level calculated from electronic specific heat data is about 0.84 states/(eV f.u.), which may explain the low T_c of this material. These results, together with previous work on A²⁺M₂X₂ compounds, imply that the superconducting transition temperature can be tailored by proper chemical substitution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction


Ternary intermetallic compounds with the ThCr₂Si₂ (AM₂X₂) structure are well known for accommodating a superconducting ground state. Since the discovery of superconductivity in LaFe- $AsO_{1-x}F_x$ at $T_c = 26$ K, Fe-based compounds having the $ThCr_2Si_2$ structure, that is AFe₂As₂ (A = Ba, Ca, Sr and Eu), have been found to be superconducting either with carrier doping or under pressure [1–4]. The superconductivity in these compounds emerges upon the suppression of a spin density wave (SDW) transition [5]. The ThCr₂Si₂-type structure can also accommodate trivalent rare earth ions at the A site, paving the way for the synthesis of new compounds with additional electrons. For instance, LaRu₂P₂ is superconducting with a T_c of 4.1 K [6]. However, no superconductivity was observed in ARu_2P_2 (A = Ca, Sr, Ba) [6].

The ThCr₂Si₂-type structure (Fig. 1) contains stacked layers along the c axis in the order $A-[X-M_2-X]-A$, providing a quasitwo-dimensional (2D) MX network. However, as pointed out by Hoffmann and Zheng [7], interlayer X–X bonding sometimes forms to give a 3D network, called a collapsed tetragonal (cT) structure. The Ba, Sr and Ca-based series of iron arsenides remain in the un-collapsed tetragonal (ucT) structure at ambient pressure, while SrCu₂As₂, CaCu_{1.7}As₂, CaPd₂As₂, SrPd₂As₂ and LaNi₂As₂ crystallize in the cT structure [8–10].

Superconductivity in the collapsed Fe-As phases is rather rare and is often attained under high pressure. For example, the application of pressure on $A^{2+}Fe_2As_2$ (A = Ca, Sr, Ba, Eu) induces both superconducting and collapsed transitions [11–14]. Recently, Anand et al. [8] reported ambient pressure superconductivity in $A^{2+}Pd_2As_2$ (A = Ca, Sr) with a cT structure, with a T_c of 1.27 K and 0.92 K, respectively. However, so far, the observed superconducting materials in the cT structure are exclusively limited to those containing a divalent A cation.

In the present article, we report the discovery of superconductivity in LaPd₂As₂ with the cT structure. LaPd₂As₂, the rare earth analogue of A²⁺Pd₂As₂, was first reported by Hofmann and Jeitschko in 1985 [15]. Although no statement was given as to which phase (cT or ucT) is formed, the obtained interlayer As-As distance of 2.318 Å, slightly shorter than the covalent single bond distance of 2.38 Å for As, indicating that LaPd2As2 has a cT structure. The collapsed phase is generally stable compared to the uncollapsed phase at low temperatures. The decreasing temperature decreases the As-As bond length, and the shorter As-As distance destabilizes the ucT structure. This results in the formation of the cT structure at low temperature or high pressure. Hence, once the structure is collapsed, the collapsed phase is seen even at the lowest temperature. LaPd₂As₂ contains strong ionic covalent Pd-As bonding inside the Pd₂As₂ blocks and covalent As-As bonding between the adjacent Pd₂As₂ layers, combined with ionic bonding between Pd₂As₂ blocks and La cations. Within the ionic description the valence of As is -2 (compared to -3 in ucT structure). In

^{*} Corresponding author. E-mail address: kage@scl.kyoto-u.ac.jp (H. Kageyama).

Fig. 1. Crystal structure of $LaPd_2As_2$, where green, blue and red spheres represent La(2a), Pd(4d), As(4e) respectively; the blue dotted line indicates the unit cell. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

 ${\rm A^{2+}Pd_2As_2}$, the formal Pd valence is +1, while in ${\rm LaPd_2As_2}$ it is in a subvalent state.

2. Experimental details

Polycrystalline samples of LaPd₂As₂ were synthesised at high temperature in an evacuated silica ampule. The starting materials used were La (99.9%), As (99.9%) and Pd (99.9%). Stoichiometric amounts of these elements were mixed inside a nitrogen-filled glove box, pelletized, heat-treated at 850 °C for 20 h. Then, the obtained specimen was ground, pelletized and heated again at 850 °C for 40 h before cooling down to room temperature. The light grey material is stable in air. The crystal structure of LaPd₂As₂ was investigated by synchrotron X-ray diffraction (SXRD) at SPring-8 BL02B2, where a wavelength of 0.420032 Å was used. A standard DC four terminal method was employed for measuring the resistivity of the specimen using a physical property measuring system (Quantum Design, PPMS) equipped with a 3 He refrigerator. The pellet dimensions were 4 × 2 × 2 mm 3 . Magnetization measurements were carried out using a SQUID Magnetometer (Quantum Design, MPMS), with a 3 He refrigerator. A disc-shaped sample with diameter of 2 mm and thickness of 1 mm was used for the specific heat capacity measurement by the relaxation method in the PPMS.

3. Results and discussion

Fig. 2 shows the SXRD pattern of LaPd₂As₂ at room temperature, which demonstrates formation of LaPd₂As₂. An unidentified

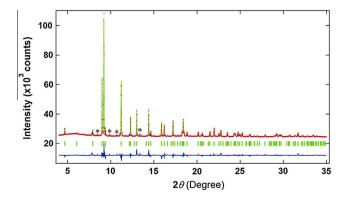
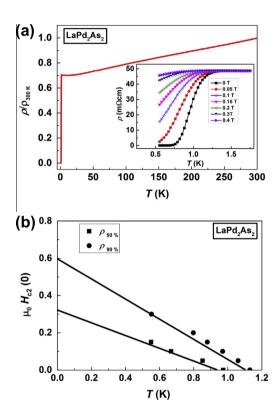



Fig. 2. Refined synchrotron XRD pattern of $LaPd_2As_2$, showing observed (red cross) calculated (green line) and difference (blue line) profiles. The symbol \ast indicates impurity phases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 Refined room temperature synchrotron XRD parameters for LaPd₂As₂. $R_p = 2.303$, $R_{wp} = 3.995$, Occ = 1 for all sites.

Atom	Site	x	у	Z	$U_{\rm iso}({\rm \AA}^2)$
Pd	2a 4d 4e	0 0 0	0 1/2 0	1/4	0.00271(1) 0.02036(6) 0.00430(8)

Fig. 3. (a) The temperature dependence of electrical resistivity ρ for LaPd₂As₂ in zero field. The inset shows the variation of resistivity with respect to the magnetising field. (b) Temperature dependence of upper critical field $H_{\rm c2}$ deduced from the midpoint of the resistive transition for $\rho_{\rm 50\%}$ and $\rho_{\rm 90\%}$ conditions. The solid line indicates linear fit to the data.

impurity phase (<5%) is also present in the SXRD pattern. A Rietveld refinement using JANA2006 [16] confirms the previous structural analysis with the I4/mmm space group and the refined atomic coordinates and lattice parameters (a = 4.3027(27) Å,c = 10.268(14) Å) are similar to those reported in the literature [15]. The refined structural parameters are given in Table 1. The observed Pd-As and interlayer As-As distances are found to be 2.567 Å and 2.318 Å, respectively. Iso-structural CaPd₂As₂ and SrPd₂As₂ have slightly longer interlayer As-As distances of 2.433 Å and 2.541 Å, indicating that the trivalent La cation in LaPd₂As₂ shortens the interlayer As-As bonding. The As-Pd-As angle, where the two As atoms are on the same layer, is about 113.615°, which is larger than 109.5° (i.e. the ideal angle of a tetrahedron). In general, in collapsed AM₂X₂ structures this angle deviates from the ideal 109.5°. For instance, isostructural compounds CaPd₂As₂ and SrPd₂As₂ possess higher tetrahedral angles of 117.31° and 119.07° respectively [8]. However, compared with its alkaline earth counterparts, LaPd₂As₂ has an angle much closer to the ideal angle. It is worth to note that the ideal angle is responsible for high- T_c in ucT iron arsenide superconductors [4,5].

Download English Version:

https://daneshyari.com/en/article/1610679

Download Persian Version:

https://daneshyari.com/article/1610679

<u>Daneshyari.com</u>