Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system

ALLOYS AND COMPOUNDS

Dong Wang^a, Shuiyuan Yang^{a,b}, Mujin Yang^a, Jianping Zheng^a, Hongfa Hu^c, Xingjun Liu^{a,b}, Cuiping Wang^{a,b,*}

^a Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, PR China ^b Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005, PR China ^c Baosteel Group Shanghai Meishan Co., Ltd., Nanjing 210039, PR China

ARTICLE INFO

Article history: Received 26 October 2013 Received in revised form 18 March 2014 Accepted 30 March 2014 Available online 8 April 2014

Keywords: Metals and alloys Phase diagrams Microstructure

ABSTRACT

The phase equilibria of the Fe–Nb–Si ternary system were investigated by electron probe microanalyzer (EPMA), back scattered electron (BSE), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) on the equilibrated alloys. In this study, three isothermal sections of the Fe–Nb–Si ternary system at 1200 °C, 1100 °C and 1000 °C were respectively determined and six ternary compounds were confirmed. The obtained experimental results show that there are large solubilities of Si in the ϵ NbFe₂ and μ FeNb phases. The newly determined phase equilibria of the Fe–Nb–Si system will provide useful information for silicon steels development.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Silicon steels are excellent soft magnetic materials that exhibit high permeability, low coercivity, and near-zero magnetostriction. They have potential for applications in high frequency fields by reducing the energy consumption and noise pollution such as transformers, power generators, and electric relays [1–9]. The magnetic flux (B10) and core loss value (W17/50) are basic parameters affecting the quality of silicon steels; both of them are sensitive to the composition of silicon steels [10-13]. Alloying with strong carbonitride formers, such as Nb and Ti [14-18], has been instrumental in successful development of new silicon steel products with enhanced properties. Therefore, Fe-Nb-Si ternary system is an important subsystem for the silicon steels. However, earlier developed Fe-Nb-Si alloys have been obtained mainly by trialand-error due to the scarcity of phase equilibria information for the Fe-Nb-Si ternary system. In order to better understand the relationships among composition, microstructure and properties of Fe-Nb-Si alloys, phase equilibria information of this ternary system is required.

In this study, three binary systems of Fe–Si, Fe–Nb and Nb–Si constituting the Fe–Nb–Si ternary system have been reviewed by

E-mail address: wangcp@xmu.edu.cn (C. Wang).

the previous investigations [19–21], as shown in Fig. 1. Five intermediate phases are known in the Fe–Si system, namely β Fe₂Si, ϵ FeSi, η Fe₅Si₃, α FeSi₂ and β FeSi₂. The Fe–Nb system has two intermediate phases, ϵ NbFe₂ and μ FeNb. The Nb–Si system shows the following intermediate phases: Nb₃Si, β Nb₅Si₃, α Nb₅Si₃ and NbSi₂. The stable solid phases and their crystal structures in all three binary systems are listed in Table 1.

There were several investigations on phase equilbria of Fe-Nb-Si system [22-35]. The first comprehensive work had been reported by Goldschmidt [22], who revealed that at least six or possible nine ternary compounds exist in this system, but their crystal structures were not still resolved. In the later studies, six ternary compounds had been confirmed, including NbFeSi₂ (τ_1) [23], Nb₂FeSi₂ (τ_2) [24], Nb₄Fe₃Si₅ (τ_3) [25], Nb₄FeSi (τ_4) [26], Nb₄Fe₄Si₇ (τ_5 (V)) [27,28], NbFeSi (τ_6 (E)) [28,29], as listed in Table 2. Denham [30] investigated the region of the Laves phase in the Fe-Nb-Si system, and found that the region of the Laves phase in the Fe-Nb-Si system was smaller with the temperature range from 1000 °C to 1300 °C than that given by Goldschmidt [22]. Additionally, several isothermal sections of this system had been reported in the previous investigations [25,31–33]. Fig. 2 shows an isothermal section at 1150 °C provided by Raghavan [32]. Furthermore, Goldschmidt [22] determined the liquidus temperatures of a number of ternary alloys in this system, and Haour et al. [34] revealed a ternary eutectic reaction at 1360 °C with composition of Fe75.5-Si21.5-Nb3 (at.%). Based on their results [22,34] and binary data [19-21], the liquidus projection was constructed

^{*} Corresponding author at: Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, PR China. Tel.: +86 592 2180606; fax: +86 592 2187966.

Fig. 1. Binary phase diagrams constituting the Fe–Nb–Si ternary system [19–21].

Table 1

The stable solid phases in the three binary systems and ternary system.

System	Phase	Pearson's symbol	Prototype	Space group	Struktur-bericht	Refs.
Fe-Si	αFe	cl2	W	Im-3m	A2	[19]
	γFe	cF4	Cu	Fm-3m	A1	[19]
	$\alpha_2 Fe_4 Si$	cP2	CsCl	Pm-3m	B2	[19]
	$\alpha_1 Fe_3 Si$	cF16	BiF ₃	Fm-3m	DO ₃	[19]
	βFe ₂ Si	hP6		P-3m1		[19]
	ηFe₅Si₃	hP16	Mn ₅ Si ₃	P6 ₃ /mcm	D88	[19]
	εFeSi	cP8	FeSi	P213	B20	[19]
	αFeSi ₂	oC48		Стса		[19]
	βFeSi ₂	tP3		P4/mmm		[19]
	(Si)	cF8	C(diamond)	Fd-3m	A4	[19]
Fe-Nb	αFe	cl2	W	Im-3m	A2	[20]
	γFe	cF4	Cu	Fm-3m	A1	[20]
	δFe	cI2	W	Im-3m	A2	[20]
	εNbFe ₂	hP12	MgZn ₂	P6 ₃ /mmc	C14	[20]
	μFeNb	hR13	Fe ₇ W ₆	R-3m	D85	[20]
	(Nb)	cl2	W	Im-3m	A2	[20]
Nb-Si	(Nb)	cl2	W	Im-3m	A2	[21]
	Nb₃Si	tP32	PTi ₃	P4 ₂ /n		[21]
	βNb ₅ Si ₃	tI32	Si ₃ W ₅	I4/mcm	D8 _m	[21]
	αNb_5Si_3	tI32	Cr ₅ B ₃	I4/mcm	D81	[21]
	NbSi ₂	hP9	CrSi ₂	P6422	C40	[21]
	(Si)	cF8	C(diamond)	Fd-3m	A4	[21]
Fe-Si-Nb	NbFeSi ₂ (τ_1)	orthorho-mbic	TiMnSi2 or TiFeSi2			[23]
	Nb ₂ FeSi ₂ (τ_2)	tetragonal		P4 ₂ /mcm		[24]
	Nb ₄ Fe ₃ Si ₅ (τ_3)	orthorho-mbic		$P2_1mn$		[25]
	Nb ₄ FeSi (τ_4)	tI12	Al ₂ Cu	I4/mcm	C16	[26]
	Nb ₄ Fe ₄ Si ₇ (τ_5 (V))	tetragonal	Zr ₄ Co ₄ Ge ₇	I4/mmm		[27,28]
	NbFeSi (τ_6 (E))	oP12	TiNiSi or PbCl ₂	pnma	C23	[28,29]

Download English Version:

https://daneshyari.com/en/article/1610975

Download Persian Version:

https://daneshyari.com/article/1610975

Daneshyari.com