FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Effects of Ni concentration on structural, magnetic and optical properties of Ni-doped ZnO nanoparticles

Yang Liu ^{a,b,c}, Hongbo Liu ^{a,b}, Zhenguo Chen ^c, Naveen Kadasala ^c, Chenyi Mao ^c, Yaxin Wang ^a, Yongjun Zhang ^a, Huilian Liu ^a, Yanqing Liu ^a, Jinghai Yang ^{a,*}, Yongsheng Yan ^{b,*}

- ^a Institute of Condensed State Physics, Jilin Normal University, Siping 136000, China
- ^b Institute of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- ^c Department of Chemistry, Purdue University, West Lafayette 47907, United States

ARTICLE INFO

Article history:
Received 16 January 2014
Received in revised form 11 March 2014
Accepted 13 March 2014
Available online 2 April 2014

Keywords:
Diluted magnetic semiconductors
Sol-gel method
Structure
Magnetic properties

ABSTRACT

Ni-doped zinc oxide $(Zn_{1-x}Ni_xO, 0 \le x \le 0.08)$ diluted magnetic semiconductors have been synthesized by the using a sol–gel method. Structural, magnetic and optical properties of the samples have been studied. The results of X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray absorption fine structure (XAFS) indicated that Ni ions were substitutionally incorporated into the crystal lattice of ZnO. With Ni concentration increasing up to 2 at.%, all diffraction peaks corresponded to wurtzite structure of ZnO, but for Zn_{0.97}Ni_{0.03}O, secondary phase of NiO emerged. Based on the results of X-ray photoelectron spectroscopy (XPS), Ni incorporated into the ZnO lattice as Ni²⁺. The produced samples showed good high-Tc (Curie temperature) ferromagnetism. The results of vibrating sample magnetometer (VSM) and photoluminescence (PL) showed that ferromagnetism (FM) of the Ni-doped ZnO nanoparticles originated from the presence of the O vacancy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Diluted magnetic semiconductors (DMSs) have been arousing wide interest due to the possibility to control spin and charge properties at the same time for future applications of spintronics [1–3]. However, the requirement of high Curie temperatures for ferromagnetic ordering has hindered the development of DMSs [4–6]. Since Dietl et al. [7] predicted the existence of room temperature ferromagnetism in transitional metal doped ZnO, the system has been extensively studied [8–10].

Ni-doped ZnO DMSs have been extensively studied [11–15]. However, it is always under debate on the existence and origin of the ferromagnetism of Ni-doped ZnO DMS materials. Some researchers held the negative opinion, because they did not observe ferromagnetism in their samples. For example, Wakano and colleagues used pulsed laser deposition (PLD) method to produce Ni-doped ZnO film on sapphire substrate [16]. However the ferromagnetism in the film was only observed at 2 K, which vanished at temperatures above 30 K. In contrast, there are still others who have positive opinion. They insisted that significant room temperature ferromagnetism did exist in single phase of Ni-doped ZnO

based DMSs. For instance, Elilarassi et al. synthesized Ni-doped ZnO nanoparticles by using a low temperature sol-gel method which exhibited room temperature ferromagnetism [17]. Photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR) and other characterization methods were employed to prove that the ferromagnetism was induced by the d-d exchange interaction between Ni²⁺ ion magnetic moment. Thereafter, on one hand the magnetism of Ni-doped ZnO based DMSs is dramatically dependent on the preparation methods or experiment parameters. On the other hand, even with the same preparation method whether there is magnetism or not is still highly controversial.

In this paper, we used sol–gel method to prepare $Zn_{1-x}Ni_xO$ with different Ni doping concentrations [18]. We studied their structural, magnetic and optical properties in order to investigate the possible origin of the ferromagnetism.

2. Experimental details

Zinc nitrate hexahydrate [Zn(NO₃)₂·6H₂O] and the appropriate amounts of nickel nitrate hexahydrate [Ni(NO₃)₃·6H₂O] were dissolved into citric acid monohydrate ($C_6H_8O_7$ ·H₂O) with stirring to form sols. Then, the mixture was polymerized to form gels. We sintered the gels at 500 °C in Ar atmosphere to form the Ni-doped ZnO nanoparticles.

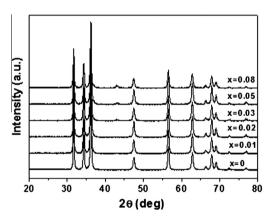
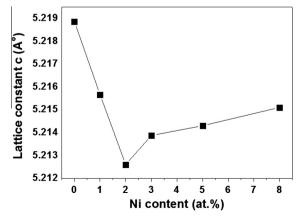
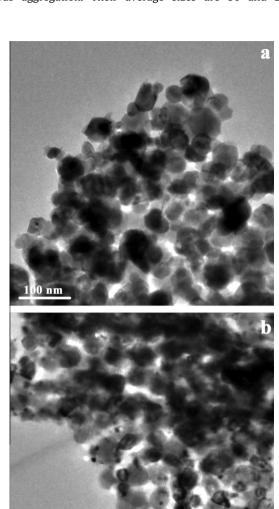
Structure characterization of $Zn_{1-x}Ni_xO$ was performed by XRD on D/max-2500 copper rotating-anode X-ray diffractometer with Cu K α radiation (40 kV, 200 mA). Morphology, interplanar distance and energy dispersive spectroscopy (EDS) were

^{*} Corresponding authors. Tel./fax: +86 434 3294566. E-mail address: jhyang1@jlnu.edu.cn (J. Yang).

investigated by using a TEM (200 keV, JEM-2100HR, Japan). Valence state of Ni was analyzed by using XPS (VG ESCALAB Mark II). XAFS measurements for the Ni K-edge were performed in fluorescence mode at room temperature on an XAFS station of the U7C beam line of the National Synchrotron Radiation Laboratory (NSRL, Hefei, China). Magnetic hysteresis loops of the $\rm Zn_{1-x}Ni_xO$ NPs were measured by using a Lake Shore 7407 vibrating sample magnetometer (VSM). PL measurement was performed on an HR800 Labram Infinity Spectrophotometer, excited by a continuous He–Cd laser at a wavelength of 325 nm and a power of 50 mW.

3. Results and discussion

Fig. 1 shows XRD patterns of the $Zn_{1-x}Ni_xO$ (x = 0, 0.01, 0.02, 0.03, 0.05, 0.08) nanoparticles. When $x \le 0.02$, all samples show only single phase wurtzite structure. When doping concentration is higher than 0.03, the NiO (200) diffraction peak is observed. Its intensity increases with increasing doping concentration. Therefore, the saturated solubility of Ni in ZnO is 2%. Crystalline particle sizes of the six samples are 31.8, 31.2, 30.5, 28.7, 26.3 and 24.4 nm. The particle size decreases with increasing doping concentration, which is the result of surface reaction competition [19]. Because the Ni-O bond energy is higher than Zn-O bond energy, the reaction mobility to raise growth surface will decrease with increasing doping concentration. Unit cell constants of the Zn_{1-x}Ni_xO against Ni concentration are plotted in Fig. 2. The lattice constant c decreases with increasing doping concentration when the concentration is lower than 2%. This is because Ni²⁺ radius (0.069 nm) is smaller than that of Zn^{2+} (0.074 nm) [20,21]. This proves that Ni²⁺ has been incorporated into ZnO. However, c axis increases at higher concentration. This is probably because some Ni²⁺ ions have taken interstitial sites in ZnO.

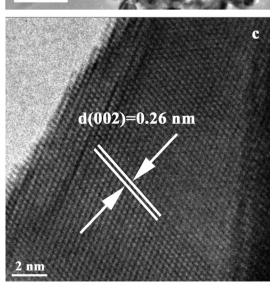

Fig. 1. XRD patterns of the $Zn_{1-x}Ni_xO$ nanoparticles annealed at 500 °C in Ar.

Fig. 2. Unit cell constant c of ZnO as a function of Ni doping concentrations.

Fig. 3 shows low magnification TEM images of $Zn_{0.98}Ni_{0.02}O$ and $Zn_{0.92}Ni_{0.08}O$. Both samples show spherical morphology, without obvious aggregation. Their average sizes are 30 and 25 nm,

100 nm

Fig. 3. TEM images of the $Zn_{0.98}Ni_{0.02}O$ (a) and $Zn_{0.92}Ni_{0.08}O$ (b) nanoparticles; HRTEM image of the $Zn_{0.98}Ni_{0.02}O$ nanoparticles (c).

Download English Version:

https://daneshyari.com/en/article/1611124

Download Persian Version:

https://daneshyari.com/article/1611124

Daneshyari.com