
Microscopic partition of pressure and elastic constants in CdTe
polymorphs

T. Ouahrani a,b, R. Franco c, J.M. Menéndez c, M. Marqués c, J.M. Recio c,⇑
a Laboratoire de Physique Théorique, Tlemcen University, 13000 Tlemcen, Algeria
b École Préparatoire en Sciences et Techniques, 13000 Tlemcen, Algeria
c MALTA Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo, Spain

a r t i c l e i n f o

Article history:
Received 10 October 2013
Received in revised form 15 December 2013
Accepted 16 December 2013
Available online 24 December 2013

Keywords:
Atomic scale structure
High-pressure
Computer simulations
Semiconductors
Phase transitions

a b s t r a c t

Within the framework of density functional theory, first principles calculations were carried out to deter-
mine pressure stability ranges of zinc-blende (B3), cinnabar (Cinn), rock-salt (B1), orthorhombic (Cmcm),
and cesium chloride (B2) phases of CdTe. In agreement with experimental observations, we found a
B3 ! Cinn ! B1 ! Cmcm pressure-induced sequence, and predict the B2 phase as a potential high
pressure polymorph. The equations of state of all these polymorphs and the components of the elasticity
tensor of the B3 phase at zero pressure were determined and microscopically analyzed in terms of atomic
contributions. The concept of local pressure allows for quantifying differences in the role played by Cd
and Te as regards the compressibility of CdTe phases, and suggests the existence of a general behavior
under pressure for binary II–VI semiconductors.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

CdTe is a II–VI semiconductor compound belonging to the cad-
mium chalcogenide crystal family. This is a group of important
materials for the development of solid state devices (e.g. solar
cells) and other modern technologies [1]. In particular, CdTe has
an ideal direct band gap energy of 1.45 eV and a high absorption
coefficient, which makes a very thin layer of this material sufficient
for a high energy conversion efficiency [2]. Along with the elec-
tronic properties, the mechanical behavior of CdTe has also been
the subject of many experimental studies, including pressure ef-
fects using Raman spectroscopy [3] and transport measurements
[4]. Special attention has been paid to the structural changes of this
compound in connection with the reconstructive phase transition
sequence exhibited by other binary chalcogenides at high pressure
[3–6].

Using angle-dispersive techniques and image–plate detectors,
Nelmes et al. [6] rather unexpectedly found that CdTe undergoes
a rich polymorphism under applied high pressure. They found
the transition sequence zinc-blende ðB3Þ ! cinnabar
ðCinnÞ ! rock-salt ðB1Þ ! Cmcm with transition pressures of
3.5 GPa (B3-Cinn), 3.8 GPa (Cinn-B1), and 10 GPa (B1-Cmcm),
respectively. According to this work, the cinnabar phase of CdTe
only exists in a narrow pressure range around 3.5 GPa, which

explained why it had not been found in previous experiments. This
polymorphic sequence is now well established and clarifies contro-
versy regarding the existence of the cinnabar phase for CdTe (see
for example Ref. [7]). From the theoretical side, only a few works
have accurately simulated the correct sequence of pressure-
induced phase transitions for CdTe [8–10]. Moreover, there is still
a lack of fundamental understanding of several aspects regarding
the role played by the atomic constituents of these binary semicon-
ductors in their compressibility and in the corresponding transi-
tion pressures.

Though it is clear according to previous works (see for example
Ref. [11]), that macroscopic compressibility is one of the key
parameters linked to polymorphic sequences, phase stability is
ultimately determined by the crystalline bonding network, and
hence by the valence electrons of the particular atomic constitu-
ents of the solid. To understand the complex factors connecting
stability and equation of state (EOS) parameters of compounds,
one appealing route is to decompose macroscopic observable prop-
erties in terms of local contributions, and more specifically, of
meaningful chemical entities as the atomic constituents of the
materials. This is also of critical importance in materials design
and earth studies where a decomposition of compressibility as a
sum of atomic-like contributions allows one to rationalize trends
and to guide materials synthesis [12,13]. A formalism that is best
suited along this line relies on the rigorous quantum-mechanical
analysis of the topology of the crystalline electron density provided
by the Atoms in Molecules theory (AIM) [14]. With this formalism,
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we have shown in previous works how the partition of static ther-
modynamic properties like the bulk modulus can be used, for
example, to explain the uniform behavior of a number of cubic
oxide spinels under pressure [12,13]. Greater fractional occupation
of the oxide anion sublattice and the greater compressibility of
these anions (around 200 GPa) are the parameters that control
the response to hydrostatic pressure of all of these oxide spinels.
More recently, Otero-de-la-Roza and Luaña also proposed a feasi-
ble method for partitioning the non-isotropic elastic components
into atomic contributions by means of the AIM formalism [15].

Further insight into the behavior of solids under pressure can be
given using a new definition of local pressure: the resistance ex-
erted by an atom against volume reduction when pressure is ap-
plied [16]. The way several ZnX (X: S, Se, Te) polymorphs nicely
follow a common trend when these atomic-like (Zn and X) pres-
sures are considered has been recently illustrated [16]. An exten-
sion of our previous calculations to other polymorphs with a
different cation is desirable to test the performance of this new
concept in the binary II–VI semiconductor family.

In this contribution, our main goal is to clearly identify the role
played by Cd and Te in the rich polymorphic sequence exhibited by
CdTe under hydrostatic pressure. To this end, we analyse the par-
tition of the unit cell volume of all observed CdTe polymorphs (plus
the hypothetical B2 phase) into well-defined, disjoint, and space-
filling regions (basins) associated with these atomic constituents,
applying the AIM formalism to the crystalline wave functions ob-
tained after extensive first principles computations. Quantitative
data of the pressure effects on the calculated atomic-like basins
is obtained through careful equation of state fittings. This informa-
tion is used to evaluate local pressures, compressibilities, and elas-
tic constants for Cd and Te. A comparison with our previous results
in other binary chalcogenides is also performed to check if our
findings are general for this crystal family.

The rest of the paper is organized as follows. In Section 2, the
computational modeling is presented, giving details on the elec-
tronic structure calculations, EOS fitting procedure, the scheme
for the evaluation of the components of the elasticity tensor, and
a brief presentation of the topological partition formalism applied
to the crystalline electron density. Results and discussion in Sec-
tion 3 are split into two subsections. The first one presents bulk
properties: EOS parameters, the phase transition diagram and elas-
tic constants. Comparison with available experimental data and re-
sults from other theoretical calculations is included. The second
one deals with the microscopic partitioning of macroscopic proper-
ties focusing on the common trend of atomic pressures for all poly-
morphs of the binary II–VI compounds studied so far. A brief
summary and the main conclusions are gathered in Section 4.

2. Computational modeling

Unlike simple theoretical calculations for cubic unit cell structures, some of the
phases belonging to the pressure-induced polymorphic sequence of CdTe involve
several structural parameters to optimize, and not only total energy, but also atomic
forces and stress tensor components have to be computed. We have calculated the
crystalline energy (E) at different volumes of the unit cell (V) for the following poly-
morphs: wurtzite (B4), zinc blende (B3), cinnabar (Cinn), rock-salt (B1), orthorhom-
bic (Cmcm), and cesium chloride (B2); E and V always refer to one CdTe formula
unit. B3 ðF�43mÞ, B1 (Fm3m), and B2 ðPm�3mÞ are cubic structures and only the lattice
parameter a has to be determined. B4 (P63mc) and cinnabar (P3121) are hexagonal
phases and both a and c lattice parameters are needed to determine the unit cell
size. In addition, the z coordinate of Te (usually referred to as u) for the B4 structure,
and the x coordinate of Cd and Te non-equivalent atoms (usually referred to as u
and v, respectively) for the cinnabar structure need to be evaluated. Finally, the
orthorhombic (Cmcm) unit cell is completely defined with the unit cell parameters
a; b, and c, and the y coordinate of Cd and Te non-equivalent atoms.

First-principles total-energy calculations at selected volumes of the correspond-
ing primitive unit-cells of all the polymorphs structures were performed under the
formalism of the density functional theory with the ABINIT code [17]. We used the
Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional [18] and

norm-conserving Troullier–Martins pseudopotentials [19] with 12 and 6 valence
electrons for Cd an Te, respectively. Due to the existence of energetically competi-
tive structures, we ensured that the absolute total energies converged to
10�6 hartree=atom. To this end, we used 8 � 8 � 8, 6 � 6 � 8, and 4 � 8 � 6 Monk-
horst–Pack meshes [20] for the cubic, tetragonal and hexagonal, and orthorhombic
lattices, respectively and the plane-wave cutoff energy was set to 60 hartrees. Opti-
mization of the unit cell geometry and atomic positions at each volume was per-
formed via a Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization (see Ref.
[17]) of the total energy using the Hellmann-Feynman forces on the atoms and
the stresses on the unit cell. During the calculations, relaxations of both the internal
structural parameters and the cell shape were included. The structural relaxation
was performed until the residual forces and stresses were less than 5�10�5 har-
tree/bohr and 5� 10�7 hartree=bohr3, respectively. The chosen computational
parameters (cutoff energy, k-point meshes, force tolerance, etc.) guarantee an accu-
rate determination of the polymorphic sequence and the corresponding structural
and energetical properties.

For each polymorph, the equilibrium volume V0, the bulk modulus B0, and its
first pressure derivative B00 (the 0 subscript meaning that all these quantities were
evaluated at zero pressure) are then obtained by introducing the corresponding en-
ergy-volume (per unit formula) (E;V) points as input to the GIBBS code [21]. This is a
well-tested computational code that implements a combined statistical numerical
analysis with well-known analytical EOS such as those of Vinet, Birch, Murnaghan,
etc. (see Ref. [21] and references therein). The standard strategy for the evaluation
of the relative stability of high-pressure phases at static conditions (zero tempera-
ture and zero point vibrational contributions neglected) is based upon the examina-
tion of enthalpy (H ¼ Eþ pV) as a function of pressure (p) for different phases. This
task is also performed with the GIBBS code.

Dynamical stability of high pressure cubic phases was also analyzed after the
determination of the phonon dispersion curves for the B1 and B2 phases. We com-
puted the interatomic force constants by Fourier transformation of the dynamical
matrices computed on 4 � 4 � 4 regular q-point grids. Due to the metallic character
of the high pressure phases of CdTe, the calculations of the initial wave functions
were performed on 16 � 16 � 16 k-point meshes and including a cold smearing
of 0.01 hartree. Whereas this parameter is relevant to the evaluation of the phonon
dispersion curves, we have checked that it does not affect the energy-volume
curves.

First-principles calculation of the components of the elasticity tensor of crystal-
line solids can be approached with different methodologies as discussed in Ref. [22].
One elegant scheme, involving first derivatives of the stress and not second deriv-
atives of the energy, has been proposed by Le-Page and Saxe [23], and illustrated by
Hector et al. and others including pressure effects (see for example [24–27]). For the
evaluation of these components just at zero pressure and in the cubic structure of
the B3 phase of CdTe, we can carry out a simple procedure described in Ref. [15] and
detailed as follows. Within the elastic domain of the crystal (i.e. infinitesimal defor-
mations with respect to the equilibrium configuration), stress (s) and strain (�) are
related by linear transformations:

sij ¼
X

kl

cij;kl�kl and �ij ¼
X

kl

sij;klskl; ð1Þ

where the indexes run over the three (x; y; z) cartesian coordinates and cij;kl and sij;kl

are the elastic constant and the elastic compliance components, respectively. The
bidimensional s and � tensors can be transformed into one index of vectors using
the Voigt [28] notation:

½s11; s22; s33; s23; s31; s12� ) ½s1; s2; s3; s4; s5; s6� ð2Þ

and

½�11 ; �22; �33; �23; �31; �12 � ) ½�1; �2; �3; �4; �5; �6�: ð3Þ

Under the Voigt notation, and in the limit of infinitesimal deformations, cij;kl and
sij;kl can be expressed with just two indexes as follows:

cij ¼
@si

@�j

� �
�0 ;0

and sij ¼
@�i

@sj

� �
s0 ;0

; ð4Þ

where primes and the zero subscripts indicate, respectively, that all other strains
(stresses) are null and the derivatives are evaluated at the equilibrium geometry.

Alternatively, in terms of the total volume, Eq. (4) becomes:

cij ¼
@si

@ej

� �
e0 ;0
¼ @si

@V
@V
@ej

� �
e0 ;0
: ð5Þ

These equations will be further exploited below. Now, for the practical calcula-
tion of the elastic constants, we recall the following expression for the elastic en-
ergy of the crystal (see Ref. [15]):

/ ¼ E� E0

V0
¼ 1

2

X
ij;kl

cijkl�ij�kl; ð6Þ

where V0 and E0 are the equilibrium cell volume and energy, respectively.
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