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Abstract

We propose linear programming (LP) models for attainable region (AR) analysis by considering a rate vector field in concentration
space with an arbitrarily large number of points. One model provides a method to construct candidate ARs using a fully connected
network of continuously stirred tank reactors (CSTRs) of arbitrary volume. More importantly, these methods are extended to derive /inear
programming conditions that are stronger necessary conditions than have proposed previously by Glasser and Hildebrandt. We state the
LP condition as: No combination of nonzero volume CSTRs, operating at discretized points in the complement of the candidate AR,
can extend the region. We demonstrate these proposed linear programming techniques on several two-dimensional reaction mechanisms
and then apply the LP methods to verify extensions for a previously published three-dimensional candidate AR. © 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

The attainable region (AR) was originally defined by
Horn (1964) as the full set of product composition vectors
in RV that can be achieved by all possible steady-state
reactor networks, using only the processes of reaction and
mixing. In the past 15 years, much work has been devoted
to AR research, including that of Glasser, Hildebrandt and
coworkers (Glasser, Hildebrandt, & Crowe, 1987; Hilde-
brandt & Glasser, 1990; Glasser, Hildebrandt, & Crowe,
1990; Glasser, Hildebrandt, & Glasser, 1992; Godorr, Hilde-
brandt, & Glasser, 1994; Nicol, Hildebrandt, & Glasser,
1997; Glasser & Hildebrandt, 1997). Much of this work fo-
cused on geometric interpretations of the fundamental pro-
cesses such as reaction and mixing for synthesizing reactor
networks. Throughout this work, a set of necessary condi-
tions and properties were derived that the AR must satisfy.
For reaction and mixing problems, these properties are:

e The AR includes the feed points to the system.
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e The AR is convex.

e The process vectors or linear combinations thereof must
point into, be tangent, or be zero along the boundary of
the AR (except when the AR is constrained, such as with
bound on maximum temperature).

e No rate vector in the complement of the AR, when ex-
trapolated back into the AR, can intersect the AR.

The first property is just a definition, as a candidate AR
must be constructed from an initial attainable point. The
second property follows by including mixing as one of the
fundamental processes in the system. The third property
follows from geometric interpretations of the process vec-
tors. For instance, if a process vector (e.g. reaction) pointed
out of the current AR, that particular process (e.g. reaction
in a plug-flow reactor, PFR) could be used to further extend
the region. The fourth property excludes the possibility
of a single continuously stirred tank reactor (CSTR) from
extending the candidate AR.

The AR analysis technique has been applied to many
problems including isothermal reactor network synthe-
sis problems (Hildebrandt & Glasser, 1990), nonisother-
mal reactor network synthesis problems (Glasser et al.,
1992; Hopley, Glasser, & Hildebrandt, 1996; Nicol et al.,
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1997), optimal control problems (Godorr, Hildebrandt,
Glasser, & McGregor, 1999), reaction and separation prob-
lems (Omtveit, Tanskanen, & Lien, 1994; Nisoli, Malone,
Michael, & Doherty, 1997) and distillation/separation
problems (Kauchali, McGregor, & Hildebrandt, 2000). In
contrast, a number of superstructure optimization strategies
have been proposed for the direct construction of reactor
networks. These include the mathematical programming
strategies (Chitra & Govind, 1981; Achenie & Biegler,
1986; Achenie & Biegler, 1990; Kokossis & Floudas, 1990;
Kokossis & Floudas, 1991; Smith, 1996; Schweiger &
Floudas, 1999; Esposito & Floudas, 1999). However, in
these studies, it is not clear whether the superstructure is
rich enough to consider all attainable reactor networks. In
order to address this question, AR concepts have also been
incorporated within mathematical programming models for
reactor network synthesis (Balakrishna & Biegler, 1996;
Lakshmanan & Biegler, 1996; Rooney & Biegler, 2000;
Pahor, Irsic, & Kravanja, 2000). These mathematical pro-
gramming approaches overcome the geometric difficulties
the AR approach encounters in problems with more than
three dimensions, making them more applicable to indus-
trial case studies (Lakshmanan, Rooney, & Biegler, 1999;
Pahor et al., 2000).

In the above studies, a candidate AR is usually constructed
by recursive application of the necessary conditions. Typ-
ically, PFRs, CSTRs, and possibly differential sidestream
reactor (DSR) trajectories are found from the process feed.
Next, the trajectories are convexified using mixing, and
places on the boundary are examined where the fundamental
processes (or combinations of the fundamental processes)
point out of the current region. If such points exist, the re-
gion is extended and the search process repeats. If no points
are found, the process is terminated. What results is a candi-
date AR that satisfies the above necessary conditions. What
is left unanswered is the question of whether the current
candidate AR is indeed the true AR as Horn originally in-
tended it to be. As yet, no general sufficient conditions exist
in AR theory.

Some properties of the AR for isothermal reaction and
mixing have been formalized by Feinberg and Hildebrandt
(1997) and Feinberg (2000a, b). In particular, Feinberg and
Hildebrandt (1997) proved that extreme points of the attain-
able region will always be accessible by means of classi-
cal elementary reactor types taken in simple combination.
Moreover, the reactors that give rise to these extreme points
can be operated in parallel to achieve any realizable reac-
tor product in the attainable region. In his follow-on work,
Feinberg (2000a, b) derived additional mathematical condi-
tions that DSRs and CSTRs must obey if they help form the
boundary of the AR.

Recent work has focused on automating the AR con-
struction process. Rooney, Hausberger, Biegler, and Glasser
(2000) constructed three-dimensional (3D) candidate ARs
by finding 2D candidate ARs in orthogonal subspaces and
then recombining them sequentially to construct the higher

dimensional candidate AR. The key assumption in their
work is that CSTRs, PFRs, and mixing lines are sufficient
for finding these 2D regions. Although no proof of this as-
sertion exists, the examples solved in the AR literature seem
to confirm this assumption. Another systematic method to
construct candidate ARs was proposed by Burri, Wilson,
and Manousiouthakis (2000). They constructed a 2D region
using a linear programming formulation based on CSTRs,
PFRs, and mixing lines. This arises from a relaxation of an
infinite-dimensional state-space formulation. The problem
was decomposed into a distribution network, where all mix-
ing, splitting, recycling and bypassing occurs, and a process
operator, where all fundamental unit operations take place.

In the papers of Glasser, Hildebrandt and coworkers, the
four necessary conditions listed above are used to check
the construction of candidate ARs. Hildebrandt and Glasser
(1990) state that such regions cannot be extended by any
combination of PFRs, CSTRs, recycle reactors and any
combination of reaction and mixing. Unfortunately, this
statement is not true; the necessary conditions only pre-
vent extensions by reactors considered one at a time. That
this statement is incorrect can be seen from Fig. 3, where
two “talking CSTRs” extend a candidate attainable region
that satisfies the above necessary conditions. The concept of
‘talking CSTRs’ was first proposed by Feinberg (1991, per-
sonal communication to D. Hildebrandt) and Fig. 3 gives
an instance of this concept. Here, a PFR trajectory starting
from the feed point (C,, Cp)=(1,0) forms the boundary of a
candidate AR that satisfies the necessary conditions above.
However, two CSTRs that are fed by the feed point and each
other operate at (0,1) and (1,1) and extend this region to
the entire concentration space we wish to consider. We will
discuss this example in more detail in Section 3.1.

In this work, we derive stronger necessary conditions than
the four given above, and these exclude extensions of candi-
date regions by combinations of reactors. We also discuss
strategies for constructing such candidate regions. These re-
sults are obtained through two new linear programming (LP)
formulations for AR analysis. First, a discretization scheme
is proposed in concentration space that represents the vector
field of rate expressions with an arbitrarily large number of
points. A CSTR of any volume is allowed to operate at any
of these points and by considering a completely connected
network of CSTRs, an LP model for constructing candidate
ARs is proposed. In addition, candidate ARs, constructed
by any technique proposed in the literature, can now be sys-
tematically examined for extensions by a large network of
CSTRs, which can also approximate network combinations
of other reactor types as well. The rest of this paper is orga-
nized as follows. Section 2 presents our LP formulation for
constructing candidate ARs. Our necessary conditions are
derived from these LPs. This also leads to an efficient and
simple test for checking whether candidate ARs satisfy these
conditions. In Section 3, we demonstrate the proposed LP
formulations on several examples to show the effectiveness
of the method. Finally, we conclude the paper in Section 4
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