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a b s t r a c t

The mechanisms of shear banding in Zr-based bulk metallic glasses (BMGs) containing dendrite phase
such as b-Zr2Cu are numerically investigated using the phase-field simulation approaches. The growth
of dendrite is simulated based on Elder’s solidification theory. The interactions between the shear bands
and the dendrites are studied using the phase-field model for shear banding in BMGs. It is found that the
properties of dendrites such as the rotation angle representing their dispersion patterns and their fracture
energy significantly affect the branching, multiplication and detour of shear bands, which result in the
improved ductility of the composites. The simulation evaluates quantitatively the properties of dendrites
that determine the features of shear banding in the composites.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, bulk metallic glasses (BMGs) have attracted
much attention because of their distinguished mechanical
strength, excellent corrosion resistance and thermo-plastic defor-
mation properties [1]. However, shear banding or localized shear
deformation at room temperature has prevented BMGs from appli-
cations in many areas [2–4]. In order to improve the room-temper-
ature ductility of BMGs, several kinds of BMG matrix composites
containing quasicrystals or intermetallic crystalline phases have
been developed [5–9]. Significant improvements on the ductility
have been reported in BMG matrix composite where in situ formed
dendrite phases are introduced [10–12]. Although recent experi-
mental and simulation studies have revealed that the restriction
of shear banding and the bifurcation of shear bands which could
be related with the presences of dendrites in the BMG matrix com-
posites may play important roles in their improved ductility, how
the relevant parameters of this crystalline dendritic phase such as
its volume fraction, shape and dispersion pattern affect the
mechanical properties of BMG matrix composites in microscopic
or mesoscopic scales are yet to be resolved.

In this work the mechanisms of shear banding in the Zr-based
BMG containing dendritic phase are numerically investigated
based on the phase-field models [13]. As observed in experiments,
the geometries such as the arms of the dendrites could signifi-
cantly affect the deformation behaviors of the BMG composites.
Previous simulations [14] on the shear banding and mechanical
properties of BMG composites fail to account for such geometric

details of the dendrites. It is essential to consider the geometry
and microstructural details of the dendrite since the sizes of the
arms of the dendrite are comparable with that of shear bands,
which ultimately determined the shear banding behaviors of
BMG composites under mechanical deformation. Hence in this
work we will analyze the interaction of shear bands with dendrites’
microstructures and how ductility could be improved in connec-
tion with such interaction.

This paper is organized as follows. In Section 2, we briefly de-
scribe the simulation methods, including the phase-field models
for the simulation of dendrite phase formation processes [15], sim-
ulation of shear banding in BMG and crack propagation in crystal-
line phase. In Section 3, the simulation results will be discussed to
reveal the details of interaction between shear bands and den-
drites. From the simulation, the effects of the properties of den-
drites such as their patterns, geometry and mechanical
properties on the ductility of the BMG composites can be revealed
in the mesoscopic scales.

2. Models and simulation methods

Phase-field modeling methods are employed to investigate shear banding in
BMGs, dendrite phase formation and crack propagation in crystalline dendritic
structures. Details are described as follows.

2.1. Phase-field modeling of shear banding in BMGs

According to the phenomenology model for shear banding in BMGs [13], the
shear band is considered as a consequence of the structural transformation of defor-
mation defects, which represent the loosely packed atomic structures consisting of
excess volumes that are more vulnerable to internal rearrangement than the ideal
close packed glassy structures. Whether it is activated thermally or mechanically,
the shear band shall be presented as a result of accumulation and nucleation of
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the deformation defects. The normalized density of deformation defects defined as
w(r) is chosen as the order parameter describing the deformed glassy structures.
Based on the above-mentioned definitions, the ideal un-deformed state can be de-
scribed as the structure with w(r) = 0, and the presence of ordering of deformation
defects can be represented as w(r) > 0. The shear band can be described as the states
when the density of deformation defects reaches a critical value, defined as
w(r) P 0.8, while the fracture occurs when w(r) ? 1.0. Based on these phenomeno-
logical accounts for the deformation and fracture characteristics of BMG, the free
energy density of deformation defects can be written by a Ginzburg–Landau formu-
lism as:

fw ¼
a
2

w2 þ b
3

w3 þ c
4

w4 þ . . . ; ð1Þ

where a, b and c are coefficients depending on local strain energy and temperature.
According to the characteristics of shear band, the regions around the deforma-

tion defects still remain elastic, and the strain energy e[eij] can be written as
e[eij] = 0.5Cijkleijekl, where eij is the component of the strain tensor, and Cijkl is the
component of the stiffness matrix. In a glassy solid where deformation defects such
as free volumes are presented, the free-energy density of the deformation defects fw

has to be taken into account in the local strain energy f(w, eij) which contributes to
the free energy density F of the glassy solid: f(w, eij) = e[eij] + fw. Because the defor-
mation defect density is very small at the elastic region, the coefficients of Eq. (1)
can be expanded by the plastic work De = e[eij] � e0 under plastic deformation,
where e0 is the strain energy at the elastic limit. Assuming the leading error term
De � w4 or (De)2 � w2 in Eq. (1) after such expansion, the local strain energy is written
as:
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where the coefficients a0, b0 and c0 depend on external state variables except the
strain, and a0 = a0(Tg � T)/Tg where Tg is glass transition temperature and a0 is a con-
stant. a1 and b1 are constants.

Under external load, the free energy of the system is an integral of the kinetic
energy, the free-energy density and the gradient of the density of deformation de-
fects over the whole volume of the solid as:
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where q0 is the mass density of the sample; u is the displacement field; V is the vol-
ume of metallic glass, and j is the interfacial energy between the ideal glassy regions
and the deformation defects [13]. The equations of motions for u and w can be de-
scribed as the variation of the free-energy of the system according to the Ginz-
burg–Landau theory,
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and,

sw
@w
@t
¼ � dF

dw
¼ jr2w� ða0wþ b0w2 þ c0w3Þ �wða1 þ b1wÞðe½eij� � e0Þ; ð3bÞ

where sw is the characteristic time for deformation defects activation. By solving Eq.
(3), the dynamic process of deformation of BMG can be described [13].

Zr-based (Zr–Ti–Ni–Cu–Be) BMG with dimensions of 20 � 20 � 2 lm3 is chosen
as the BMG matrix in the simulation. An initial crack with length of 0.4 lm, as
shown in Fig. 1a, is introduced. The materials properties of Zr-based BMG are as fol-
lows [16]. Tg = 625 K; Young’s modulus E = 95 GPa; Possion’s ratio m = 0.36;
q0 = 6050 kg/m3; elastic strain limit under uniaxial tension is elimit = 2%, and
e0 = 38 J/m2; sw = 0.25 ns.

2.2. Phase-field modeling of dendrite formation

In order to investigate the interaction between the shear bands and the crystal-
line dendrites, formation of b-Zr2Cu dendrite phase from the melts of alloys has to
be simulated first. Dendritic structure is commonly seen in the solidification of al-
loy, and its shape is usually very complicated. The phase-field model based on El-
der’s solidification theory [15] has been successfully developed to describe the
dendritic pattern formation.

The order parameter u(r) is employed to represent the phase transformation
during the formation of b-Zr2Cu solid phase from the melts. It ranges from �1.0
to 1.0. u = �1.0 corresponds to the liquid phase while u = 1.0 represents the solid
phase. The free energy functional of a binary alloy f(u, c, T) has been proposed as
a function of u(r), the usual solute concentration field c(r), and the temperature
field T(r). The equation can be described as [15]:
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where ec ¼
ffiffiffiffi
H
p
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H
p

Wu are the constants. Wu = 1 nm and Wc = 1 nm are
used to define the length scales of the solid–liquid interface and the compositional
boundary, respectively. H = 6.05 � 10�13 J/m3 is the nucleation barrier which is as-
sumed to be the same for Zr and Cu atoms [15]. Ginzburg–Landau formalism can
be applied to Eq. (4) to establish the equations of motion for the phase fields u(r)
and c(r). b-Zr2Cu dendrites with different sizes can be obtained by setting their sur-
faces as u(r) = 0. The temperature field is assumed to be homogeneous.

In this work, the properties of b-Zr2Cu crystallites are chosen as follows [15]:
the melting temperature TM = 1726 K, the latent heat L = 2.311 � 109 J/m3, the heat
capacity cp = 5.313 � 106 J/(m3K), the diffusivity DL = 10�5 m2/s. The Young’s modu-
lus is 121 GPa [17], and the Poisson’s ratio is 0.28. Fig. 1b shows the geometry of a
typical dendrite obtained from the simulation.

2.3. Phase-field modeling of crack propagation in crystalline phase

In the BMG composites, the adhesion between the secondary phase and the
BMG matrix is assumed to be perfect, resulting in the continuous displacement at
the dendrite-BMG interface. Shear bands in the BMG matrix may induce cracking
in the crystalline dendrite phase. To simulate the cracking in dendrites obtained
in Section 2.2, the order parameter / describing the fracture state of the crystalline
solid has to be introduced. It is defined that / = 1 represents unbroken solid while /
= 0 denotes fully ruptured state.

The governing equation for the order parameter / has been developed to ana-
lyze the unsteady crack motion during a brittle fracture [18]:

s0
@u
@t
¼ Dur2u� V 0ðuÞ � l0

2
g0ðuÞðjeijj2 � ecÞ; ð5Þ

where s0 = 20 ns is the characteristic time of fracture process and D/ = 1 � 10�5 J/m
is the surface energy describing the fracture process zone. l0 = 100 GPa is the shear
modulus. VðuÞ ¼ 1

4 u2ð1�u2Þ is a double-well function which determines the states
of cracking as mentioned above, and g(/) = 4/3 � 3/4 aims to stabilize the unbroken
state when the applied strain energy is smaller than the critical value ec, which is
used as a measure of the fracture energy of the crystalline dendrite phase.

The interaction between shear bands and dendrites in BMG composites can be
described by solving Eqs. (3) and (5) with finite element methods. We use triangle
meshes for the model systems. The sizes of meshes can be as small as 2 nm near the
regions of initial crack and the tips of the dendrite arms.

3. Results and discussions

Fig. 1b shows the b-Zr2Cu crystalline phase obtained from
phase-field simulation. It can be found that the patterns of the den-
drite phase are consistent with the b-Zr2Cu dendrites observed in
electron microscopy [12], in particular the secondary arms can
be well distinguished from the primary arms of the dendrite.

For the Zr-based BMG composites containing b-Zr2Cu dendrite
phase whose fracture energy is approximated as ec = 48.4 J/m2,
the interactions between the shear bands and the secondary
phases with four different rotation angles (h = 0�, 15�, 30�, and
45�) which describe the relative positions between the initial shear
bands and the primary arms of dendrite, are shown in Fig. 2. If the
rotation angle is h = 0�, the shear band gets close to the primary
arm’s tip of the dendrite. Then cracking occurs in the dendrite as
shown in Fig. 2a. The cracking area of the dendrite is so large that
shear bands are also generated in the BMG matrix close to the tip
of the primary arms. It is noted that the interaction results in not
only crack propagation in the dendrite, but also the extension of
incident shear band in the BMG matrix. This interesting phenome-
non suggests that under mechanical deformation the presence of
dendrite phase in the BMG matrix leads to more fracture surfaces
in the dendrite and more shear bands in the BMG matrix which
could accommodate more plastic strains and the ductility of the
composite could increase. In the case of the rotation angle h = 15�
as shown in Fig. 2b, when the shear band gets close to the second-
ary arms of the dendrite phase, its propagation direction is chan-
ged a bit by the secondary arms before it generates fracture
surface in the primary arm. The crack passes through one of the
primary arms of the dendrite and induces shear banding in the ma-
trix, accompanying by an additional crack which passes through
the other primary arm of the dendrite. More shear bands could also
be generated in the BMG matrix close to the cracking areas of the
primary arms. Similar with the case of h = 0�, the ductility may
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