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a b s t r a c t

We obtain insights into the athermal/isothermal martensite classification, and into puzzling delay times
in athermal martensites, from Monte Carlo temperature-quench simulations of a discrete-strain pseu-
dospin model for a square to rectangle transition.
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1. Introduction

Many functional materials such as martensitic steels and shape
memory alloys, high temperature superconductors and colos-
sal magnetoresistance manganites, undergo ferroelastic structural
transitions, with components of the spontaneous strain tensor as
the order parameter [1–6]. Competing variants with different low-
temperature unit cells, can coexist in different regions separated
by strain domain walls, such as twins oriented along preferred
crystallographic directions. This elastic texturing can be described
by local distortion matrices acting on the reference lattice vectors
[4]; by phase fields that describe the local unit cell phases [7]; or
by Ginzburg–Landau free energies as invariant polynomials of the
local physical strains [8–10].

Martensites have for decades, been classified as isothermal or
athermal, with respectively slow or fast conversion from austen-
ite [1–3]. In a more recent puzzle, an athermal material quenched
to above its martensite start temperature Ms (where there should
only be austenite), has been shown to convert to martensite after a
delay, that is longer for higher temperatures [11]. Other athermal
materials show no such conversion even after annealing at T > Ms

for 21 days [12]. The temperature-dependent delay tail has been
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modelled by temperature-dependent Landau metastability barri-
ers to austenite conversion, that decrease and vanish at a spinodal
temperature ∼Ms [13]. These three results need to be reconciled
[14].

In this paper, we present an overview as well as new results on a
discrete-strain [15], or pseudospin version of the Ginzburg–Landau
strain approach [16,17]. Monte Carlo simulations [18] of such pseu-
dospin Hamiltonians yield insights into both long-standing and
recent issues in athermal and isothermal martensites [1–3,11–13].

The physical strains {ei} are linear combinations of the com-
ponents of the Cartesian strain tensor e, and in three dimensions
we have 6 of them: one compressional or dilatational strain e1;
two deviatoric or rectangular strains e2, e3; and three shear strains
e4, e5, e6. To understand complex martensitic transition, it makes
sense to initially consider the simplest, square-to-rectangle struc-
tural transition, that is a 2D ‘x − y’ plane or [1 0 0] version of the 3D
tetragonal-to- orthorhombic transition [8,9]. In two dimensions,
there are 3 physical strains, namely one each of compressional e1,
deviatoric e2 and shear e6 strains. In the same spirit of simplicity, we
exclude extrinsic disorder, that could be added later, considering
only spontaneous nucleation. The order parameter (OP) then has
one component NOP = 1, and is the local deviatoric strain e2(�r). As
the free energy is invariant with respect to global rotations, and not
just local point group symmetries, it will depend on Lagrangian-
strain tensor E [19]. The Lagrangian-strains physical components
Ei = ei + gi, are the physical strains ei plus a geometric nonlinearity
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that is quadratic in the strains and local rotations. If all strains are
scaled in the spontaneous strain at transition, that is typically a
few percent, the quadratic corrections can be neglected, and Ei � ei,
for scaled variables. The variational free energy F for a first-order
transition then has a sixth order Landau free energy term FL(e2)∼e6

2
with three turning points: one at e2 = 0 square unit-cell austenite,
and martensitic variants NV = 2, at positive and negative values of e2.
The elastic cost of a domain wall is a quadratic-gradient Ginzburg
term, FG∼( ��e2(�r))2. And finally, the non-order parameter costs are
spring-like harmonic terms Fnon∼e2

1, e2
6. We need to minimize the

total free energy F(e2 ; e1, e6) = FL + FG + Fnon to find textural local
minima.

At first sight, the parabolic minima are where the non-OP strains
are separately e1 = e6 = 0 at given OP e2. However this implies all
three physical strains are independent, while in 2D there must be
only two independent displacement degrees of freedom per lat-
tice point (or per unit cell). There must be one constraint in 2D
linking the three strains, so in the end there are also two inde-
pendent strain variables. The needed constraint is the St Venant
compatibility condition [8,9]. This double-Curl constraint on the
Cartesian-component strain tensor, �� × ( �� × e)T = 0, where ‘T’ is
a transpose, is satisfied as an identity when writing strains as
displacement gradients. (It is analogous to the ��.�B = 0 Maxwell
equation reducing to an identity, when the magnetic induction is
written as the Curl of a vector potential.) The St Venant compat-
ibility constraint has at all times, a zero source term on the right
(zero Burger’s vector), and it says that spontaneously-distorted unit
cells fit together in a smoothly compatible way, with no genera-
tion of defects like dislocations, on cooling. In 3D, with 6 physical
strains, there are 3 distinct constraints, so in the end there are 3
independent strain variables, as there must be.

The St Venant condition can be written in terms of physical
strains e2, e1, e6, and links them, so a constrained minimisation
in Fourier space of Fnon(e1, e6) yields non-OP strains e1, e6 in terms
of the OP e2 [8,9,16]. Substitution back yields a nonlocal effective
OP–OP interaction Fnon → F(e2), that turns out to have a power-
law anisotropic potential U(�r − �r′)∼ cos 4(� − �′)/|�r − �r′|d, where
the anisotropy factor reflects the four-fold symmetry of the square
unit cell, and the fall-off exponent is the dimensionality: d = 2. A
ferroelastic transition with a group-subgroup symmetry change,
has NOP order parameters as a vector �e in OP space, with a Lan-
dau free energy F(�e) having NV martensitic-variant minima. Each
transition has its own characteristic Fourier-space kernel, that is
an NOP × NOP matrix U(�k). These have been evaluated [16] for the
square/rectangle transition (NOP = 1, NV = 2) and all other transitions
in 2D; and in 3D for the tetragonal/ orthorhombic (NOP = 1, NV = 2);
cubic/ tetragonal (NOP = 2, NV = 3); cubic/orthorhombic (NOP = 2,
NV = 6); and cubic/ trigonal (NOP = 3, NV = 4), transitions [16].

In general, the nonlinear Landau free energy has many higher-
order elastic coefficients of the OP strain powers, that are difficult
to extract from experiment. The most accessible is the quadratic-
term coefficient or elastic constant C′(T) ∼ C11 − C12 ∼ (T − Tc)A20,
whose softening to zero at a Tc with a slope A20, is pre-empted by a
first-order transition at a temperature T0 > Tc. Following Barsch and
Krumhansl [6], physical strains {ei} are scaled in the jump � of the
spontaneous-strain magnitude |�e| at T = T0 the austenite/martensite
free energy crossing, while Landau polynomial term is scaled in
an energy-per-unit-cell E0. It turns out that the parameters E0, �,
T0, can be chosen [16] such that higher-order elastic coefficients
are absorbed into an overall E0 prefactor, and into an internal
prefactor � of the geometrical nonlinearities. Thus with ei → �ei,
Ei → �(ei + �gi), the geometric nonlinearities can be neglected for
� < < 1, so Ei � ei, as mentioned. Thus one has ‘quasi-universality’
[16], with a material-independent FL(�e)/E0. The scaled NV free
energy minima in OP space then fall on the corners of polygons
inscribed in a sphere, of temperature-dependent radius |�e| = ε(�)

that is unity at transition. The coefficient of the scaled quadratic
term FL∼� �e2 defines a dimensionless temperature variable used
throughout,

�(T) = (T − Tc)/(T0 − Tc),

that is unity at transition T = T0, and vanishes at T = Tc < T0,
when the austenite minimum disappears. Clearly �(T) > �0 where
�0 ≡ �(T = 0) = − Tc/(T0 − Tc). The temperature T in terms of � is
T = Tc[1 − �/�0].

Evolving textures can be studied using F(�e), through numerical
solutions of the underdamped strain dynamics [8–10]. Since dif-
ferential equations with nonlinear terms can be time-consuming,
we seek a reduced model description. This emerges naturally from
the scaled free energy minima on an OP sphere. Discrete-strain
variables, or ‘pseudospins’, are defined by the scaled-strains OP vec-
tor pointing to minima �e(�r) → ε(�)�S(�r), where �S2 = 1 for variants,
and �S = �0 at the austenite turning point. The pseudospin hamilto-
nian is simply the free energy evaluated at these turning points
H(�S) = F(�e → ε(�)�S). The nonlinearities collapse, as �S6 = �S4 = �S2 =
0, 1, and so FL∼�S2. The hamiltonian is then bilinear in the pseu-
dospins, as in clock models, but here with powerlaw interactions
and temperature dependence, inherited from the free energy [16].
The statistical methods familiar in spin models can then be applied
to elasticity problems, including (local) meanfield approximations,
and Monte Carlo simulations [17,18].

For the square/ rectangle transition with NOP = 1, NV = 2, or a
scalar, three-valued S = 0, ± 1, the hamiltonian on a square grid of
unit lattice constant is, in Fourier space (ˇ = 1/kBT),

ˇH = 1
2

∑
�k

Q0(�k)|S(�k)|2,

where Q0(�k) = D0[gL(�) + �2 �K2 + 1
2 A1U(�k)]; D0 ≡ 2E0ε2/kBT; gL ≡

(� − 1) + (ε2 − 1)2 < 0 for T < T0; and ε2 = (2/3)(1 +
√

1 − 3�/4).

The Landau free energy density at minima is fL = ε2gL . Here A1 is a
scaled dimensionless elastic constant at transition ∼C11(T0)/C′(T0),
related to the anisotropy parameter.

Every structural transition has its own specific kernel, that for
the square/ rectangle case is � = 1 − ı�k,0

U(�k) = �(�k)(K2
x − K2

y )2/[K4 + (8A1/A3)(KxKy)2].

where on a unit grid, K	 = 2 sin (k	/2).
In coordinate space, the hamiltonian is

ˇH = D0

2

[∑
�r

{gL(�)S(�r)2 + �2( ��S)2} +
∑
�r,�r′

A1

2
U(�r − �r′)S(�r)S(�r′)

]
.

Typical parameter values are �2 = 1; E0/kBT0 = 3, 4, 5, 6;
Tc/T0 = 0.5 − 0.95. Henceforth, dimensionless variables are used,
with E0 and T scaled in kBT0 and T0 respectively. A single Monte
Carlo sweep is completed when all of N = L2 sites are visited once
and only once, so 1 MC sweep corresponds to 1 Monte Carlo step
per spin. The temperature is quenched to a constant value � and
held for a holding time t = th sweeps, with th < 20, 000. The initial
state {S(�r, 0)} has square seeds in an austenite sea, of geometric
side R(0) = 1, 2, 3. . . and initial martensite fraction nm(0) = 0.02 or
2%. The evolution of {S(�r, t)} is monitored. The martensite conver-
sion time tm is when nm(t) =

∑
�rS2(�r, t) rises to a specified value,

that we take as 50% conversion, or nm(tm) = 0.5. This rise is found to
be sigmoidal for small stiffness/anisotropy A1 < 1. For A1 > 1 it is flat
with step-like early bursts at short times t < < tm where nm(t) < < 1,
followed by sharp rises to unity at longer times t ∼ tm [18].

Fig. 1 shows that martensite droplet formation in one region
can induce spreading droplets in other regions, as noted in the
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