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a b s t r a c t

The transition behavior and unique properties associated with normal martensitic transition and strain
glass transition are investigated by computer simulations using the phase field method. The simulations
are based on a physical model that assumes that point defects alter the thermodynamic stability of mar-
tensite and create local lattice distortion. The simulation results show that strain glass transition exhibits
different properties from those found in normal martensitic transformations. These unique properties
include diffuse scattering pattern, “smear” elastic modulus peak, disappearance of heat flow peak and
non-ergodicity. These simulation predictions agree well with the experimental observations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A normal ferroelastics is characterized by a transformation from
austenite – a paraelastic state with disordered dynamic strain
domains (i.e., a strain liquid) to martensite – a long range ordered
strain domains as in a poly twined microstructure (i.e., a strain
crystal) upon cooling [1,2]. The martensitic transformation shows
typical first order transition behavior and plays an important role
in advanced technological applications such as in shape memory
alloys. Recently, a strain glass transition has been discovered in
Ti50−xNi50+x ferroelastic system when x > 1.0 [3]. This strain glass
transition is parallel to the well studied cluster-spin glass [4,5]
in ferromagnetic systems and ferroelectric relaxor [6–8] in fer-
roelectric systems. A strain glass is neither a strain liquid nor a
strain crystal, but a frozen disordered strain state with short range
order. On one hand it is characterized by unique properties not
found in normal ferroelastics, including “smear” elastic modulus
peak with frequency dispersion, disappearance of heat flow peak,
and small thermal hysteresis, while on the other hand, it exhibits
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similar features as the martensite such as non-ergodicity indicated
by ZFC/FC experiments [9–13], shape memory effect and superelas-
ticity [9,10]. In addition, strain glass is different from the precursory
tweed [14–16], which should be a kind of partially frozen strain
states [13,17]. The unique frozen local strain order and special
properties make strain glass indispensable for possible technology
applications.

To understand the relationship among different strain states in
doped ferroelastic systems, a phase field model based on Landau
theory of phase transition has been developed [17]. In this model,
point defects are assumed to alter the thermodynamic stability
of martensite (i.e., global transition temperature effect GTTE) and
create local lattice distortion (i.e., local field effect LFE). Computer
simulations based on the model have reproduced the strain glass
transition and described all the strain states. In the present paper,
the same model [17] is used to study the transition behavior and
unique properties of a strain glass system through phase field sim-
ulations. The simulations reproduced all the signatures properties
of a strain glass reported in recent experiments [9–13].

2. Model

The simulation is carried out for the improper
square → rectangle (2D) MT in a single crystal constrained
systems [18,19]. The order parameters of ‘rectangular’ martensitic
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Fig. 1. Microstructures of normal martensite at c = 0.0 and strain glass at c = 0.125, c = 0.2, and c = 0.4. (e–h) Describe the corresponding diffraction patterns. (a and e) c = 0.0;
(b and f) c = 0.125; (c and g) c = 0.2; (d and h) c = 0.4.

phase are described by two field variables: �(r)1, and �(r)2 (r is the
coordinate vector). The stress-free transition strain ε0
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are the constant tensors and ε0 is

the value of the transformation shear. The driving force of the
square → rectangle transformation is minimized by two sets of the
long range order parameters mentioned above: (�1, �2) = (�0, 0)
and (�1, �2) = (0, �0), where �0 is the equilibrium value of the long
range order parameter. The chemical free energy can be described:
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The global transition temperature effect caused by point defect has
been described in the landau term through changing the A1 value
[18]: A1 = A0

1 + b · c = A00
1 · (T − T0) + b · c, where c is the concen-

tration, b describes the defect strength, T0 is the critical transition
temperature. The local field effect of point defects which is time
independent and position dependent can be described through
local strain ε0

loc ij
(r) at position r: ε0
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(2)�(r)loc(2), �(r)loc(1) and �(r)loc(2) are the order parameters to
describe local field [17]. According to the theory of local field effect
in ferroelectric systems [20] and the understanding of strain glass
transition [17], in present work, the local field effects have been
described through adding odd term in landau phenomenological
free energy term [17].
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The first term in Eq. (3) depicts the normal Landau polynomial term
(2) and the second and third terms describe the local field relevant
odd term caused by local field effect [12,20].

The contribution of the transformation-induced coherency
strain to the free energy is given by Khachaturyan [18,21]. The
stochastic time-dependent kinetic equation has been used to
describe the temporal evolution. �p(r, t + �t) = �p(r, t) + ((d�p(r,
t))/dt)�t, where (d�p(r, t))/dt = − M((ıF)/(ı�p(r, t))) + �p(r, t), p = 1,
2. Kinetic equation was solved numerically using the Euler algo-
rithm and a computational cell consisting of 256 × 256 grid sites
with periodical boundary conditions. To speed up the beginning of
the kinetics process, we used large fluctuations �p(r, t), which were
produced by a random number generator.

The length scale in our simulation has been scaled in this simu-
lation. The real interfacial energy � for coherent face is ∼0.05 J/m2

[22]. The chemical free energy �F for martensitic transition system
is about −1.85 × 106 J/m3 (∼30 J/mol) [23]. According to our sim-
ulation parameter, the length scale can be calculated according to
the formula: �F/�F* = �/�*l0 . dx* = dx/l0, and we got dx* ∼ 0.94 nm,
which means the length of one grid in our simulation represent
0.94 nm in real materials.

3. Results and discussion

The microstructures at 250 K obtained at different defect
concentrations (c = 0.0, c = 0.125, c = 0.2, c = 0.4) are shown in
Fig. 1(a)–(d). Fig. 1(e)–(h) shows the related diffuse scattering pat-
terns obtained from the Fourier transform of |�i(x)|2 at different
defect concentrations. In the case of c = 0.0, the system shows typ-
ical martensitic poly twined microstructures (see Fig. 1(a)) with
strong long-range spatial correlations (as indicated by the diffrac-
tion pattern in Fig. 1(e)). When the defect concentration exceeds
a critical value [17], c ∼ 0.1, the nano-sized martensitic domains
become randomly distributed in space and no longer transformZz
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